Skip to main content
Log in

Thermohydraulic Engineering of Plate-Fin Surfaces for Heat Exchangers Subject to Required Dimensions

  • Original Research Paper
  • Published:
Process Integration and Optimization for Sustainability Aims and scope Submit manuscript

Abstract

This paper presents a design approach for plate-fin heat exchangers, where secondary surfaces are engineered with the aim of achieving fixed block dimensions. Surface engineering refers to the determination of the surface geometrical parameters that produce a desired heat transfer and pressure drop performance. Through surface engineering, the exchanger dimensions, such as length, width and height, can be considered as a design objective in heat exchanger design along with the heat duty and the pressure drop. Simple secondary surfaces such as triangular and rectangular fins are considered in this work. The approach is demonstrated using a case study, and various scenarios are analysed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

A:

Total surface area (m2)

Ac :

Free flow area (m2)

Afr :

Frontal area (m2)

AR :

Aspect ratio

ar :

Rectangular fin base (m)

at :

Half the triangular fin base (m)

br :

Height of rectangular fin (m)

bt :

Height of triangular fin (m)

Cp :

Heat capacity (J/kg K)

dh :

Hydraulic diameter (m)

F:

Correction factor of the log mean temperature difference

Fin :

Fin density (number of fins per inch)

Fpitch :

Fin pitch (m)

FTC :

Thermal contribution fraction

Fth :

Fin thickness (m)

Fthh :

Horizontal thickness of fin at folding (m)

Fthv :

Vertical thickness of fin at folding (m)

f:

Friction factor

fs :

Ratio of secondary surface area to total surface area

H:

Exchanger height (m)

h:

Heat transfer coefficient (W/m2 K)

hyp:

Hypotenuse for triangular surfaces (m)

j:

Colburn factor (StPr2/3)

k:

Thermal conductivity (W/m K)

L:

Exchanger length (m)

m:

Mass flow rate (kg/s)

Nps :

Number of passages per stream

Pr:

Prandtl number

Pth :

Plate thickness (m)

Pw :

Wetted perimeter (m)

Q:

Heat load (kW)

R:

Fouling factor (m2K/W)

Re:

Reynolds number

St:

Stanton number

T:

Temperature (°C)

TC:

Thermal contribution

Tc :

Temperature of cold steam (°C)

Th :

Temperature of hot steam (°C)

U:

Overall heat transfer coefficient (W/m2 K)

VT :

Total heat exchanger volume (m3)

W:

Exchanger width (m)

1 :

Side 1

2 :

Side 2

C :

Cold side

D :

Design value

H :

Hot side

In :

Inlet conditions

Out :

Outlet conditions

T :

Target value

α :

Total surface area of one side of the exchanger to total exchanger volume (m2/m3)

β :

Surface area of one side to the volume of that side (m2/m3)

ΔP :

Pressure drop (kPa)

ΔT LM :

Logarithmic mean temperature difference (K)

δ :

Plate spacing (m)

η f :

Fin temperature effectiveness

η o :

Overall surface temperature effectiveness

θ :

Half the value of the characteristic angle for triangular surfaces (°)

k :

Thermal conductivity (W/m K)

μ :

Viscosity (kg/m s)

ρ :

Fluid density (kg/m3)

σ :

Ratio of free flow area to frontal area

References

  • Akpomiemie MO, Smith R (2017) Pressure drop considerations with heat transfer enhancement in heat exchanger network retrofit. Appl Therm Eng 116:695–708

    Article  Google Scholar 

  • Alam T, Kim MH (2018) A comprehensive review on single phase heat transfer enhancement techniques in heat exchanger applications. Renew Sust Energ Rev 81:813–839

    Article  Google Scholar 

  • Aubin N, Tube inserts for heat exchangers for energy conservation, Proceedings of International Conference on heat exchanger fouling and cleaning, Jube 7–12, Enfling (Dublin) Ireland. Editors: Malayeri MR, Müller -Steinhagen H., Watkinson AP, 2015, 413–417

  • Chennu R (2018) Numerical analysis of compact plate-fin heat exchangers for aerospace applications. Int J Numer Method Heat Fluid Flow 24:395–412. https://doi.org/10.1108/HFF-08-2016-0313

    Article  Google Scholar 

  • Cui M (2017) A correlation for heat transfer and flow friction characteristics of the offset strip fin heat exchanger. Int J Heat Mass Transf 115:695–705

    Article  Google Scholar 

  • Diani A, Mancin S, Rossetto L (2012) Experimental and numerical analyses of different extended surfaces. Journal of physics conference series 395 https://doi.org/10.1088/1742-6596/395/1/012045

  • Kays WM, London AL (1984) Compact heat exchangers. USA, New York

    Google Scholar 

  • Khan TA, Li W (2019) Optimal design of plate-fin heat exchanger by combining multi-objective algorithms. Int J Heat Mass Transf 108:1560–1572

    Article  Google Scholar 

  • Kim MS, Lee J, Yook SJ, Lee KS (2011) Correlations and optimization of a heat exchanger with offset-strip fins. Int J Heat Mass Transf 54:2073–2079

    Article  Google Scholar 

  • Kuchadiya BB, Rathod PP (2017) Investigation of hydraulic behavior of PFHE used for cooling application. Energy Procedia 109:40–47

    Article  Google Scholar 

  • Kunpeng G, Shang N, Smith R (2015) Optimization of fin selection and thermal design of counter-current plate-fin heat exchangers. Appl Therm Eng 78:491–499

    Article  Google Scholar 

  • Maiti DK, Sarangi SK (2002) Heat transfer and flow friction characteristics of plate fin heat exchanger surfaces a numerical study. Dissertation, Indian Institute of Technology

    Google Scholar 

  • Mortean MVV, Cisterna LHR, Paiva KV, Mantelli MBH (2016) Development of diffusion welded compact heat exchanger technology. Appl Therm Eng 93:995–1005

    Article  Google Scholar 

  • Pan M, Bulatov I, Smith R (2016) Improving heat recovery in retrofitting heat exchanger networks with heat transfer intensification, pressure drop constraint and fouling mitigation. Appl Energy 161:611–626

    Article  Google Scholar 

  • Pan M, Bulatov I, Smith R (2018) Heat transfer intensification for retrofitting heat exchanger networks with considering exchanger detailed performances. AICHE J 64(6):2052–2077

    Article  Google Scholar 

  • Picón-Núñez M, Polley GT, Torres-Reyes E, Gallegos-Muñoz A (1999) Surface selection and design of plate fin heat exchangers. Appl Therm Eng 19:917–931

    Article  Google Scholar 

  • Picón-Núñez M, López-Robles JL, Martínez-Rodríguez G (2006) Alternative design approach for multi-pass and multi-stream plate heat exchangers for use in heat recovery systems. Heat Transfer Eng 27(6):12–21

    Article  Google Scholar 

  • Picón-Núñez M, Carreon CE, Polley GT (2009) The engineering of compact exchangers to required dimensions. Proceedings of the 1st Annual Gas Processing Symposium, Elsevier B.V: 88–95

  • Picón-Núñez M, Polley GT, Jantes-Jaramillo D (2010) Alternative design approach for plate and frame heat exchangers using parameter plots. Heat Transfer Eng 31(9):742–749

    Article  Google Scholar 

  • Picón-Núñez M, Polley GT, Martínez-Rodríguez G (2013) Graphical tool for the preliminary design of compact heat exchangers. Appl Therm Eng 61(1):36–43

    Article  Google Scholar 

  • Poddar TK, Polley GT (1996) Heat exchanger design through parameter plotting. Chem Eng Res Des 74(8):849–852

    Article  Google Scholar 

  • Polley GT, Panjehshahi MH (1991) Interfacing heat exchanger network synthesis and detailed heat exchanger design. Transactions of IChemE 69:445–457

    Google Scholar 

  • Polley G, Panjeshahi MH, Jegede OF (1990) Pressure drop considerations in the retrofit of heat exchanger networks. Transactions of IChemE 68:211–220

    Google Scholar 

  • Polley GT, Reyes Athie CM, Gough M (1992) Use of heat transfer enhancement in process integration. Heat Recovery Systems & CHP 12(3):191–202

  • Shah RK, Bhatti MS (1987) Laminar convective heat transfer in ducts. In: Kakac S, Shah RK, Aung W (eds) Handbook of single-phase convective heat transfer. Wiley, New York, pp 123–158

    Google Scholar 

  • Song R, Cui M, Liu J (2017) A correlation for heat transfer and flow friction characteristics of the offset strip fin heat exchanger. Int J Heat Mass Transf 115:695–705

    Article  Google Scholar 

  • Tao C, Jie W, Wei P (2017) Flow and heat transfer analyses of a plate-fin heat exchanger in an HTGR. Ann Nucl Energy 108:316–328

    Article  Google Scholar 

  • Xiao W, Shi Z, Jiang X, He G, Luo L (2018) Heat exchanger network synthesis considering the equipment size of heat transfer enhancement. Chem Eng Trans 70:715–720

    Google Scholar 

  • Yang Y, Li Y (2014) General prediction of the thermal hydraulic performance for plate-fin heat exchanger with offset strip fins. Int J Heat Mass Transf 78:860–870

    Article  Google Scholar 

  • Yang Y, Li Y, Si B, Zheng J (2015) Performance evaluation of heat transfer enhancement in plate-fin heat exchangers with offset strip fins. Phys Procedia 67:543–550

    Article  Google Scholar 

  • Yang Y, Li Y, Si B, Zheng J (2017) Heat transfer performances of cryogenic fluids in offset strip fin-channels considering the effect of fin efficiency. Int J Heat Mass Transf 114:1114–1125

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martín Picón-Núñez.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Castillo, J.L., Vizcaino-García, F. & Picón-Núñez, M. Thermohydraulic Engineering of Plate-Fin Surfaces for Heat Exchangers Subject to Required Dimensions. Process Integr Optim Sustain 4, 135–147 (2020). https://doi.org/10.1007/s41660-020-00114-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41660-020-00114-x

Keywords

Navigation