Skip to main content

Assessment of Different Technologies for Managing Yard Waste Using Analytic Hierarchy Process

Abstract

The heterogeneity of solid waste generated by a large population of different socio-economic backgrounds in India makes it difficult to have a universal best treatment option. The present study reports a comprehensive assessment of six different technologies for managing yard waste using analytic hierarchy process (AHP): composting, incineration, landfill, anaerobic digestion, pelletization-gasification, and pelletization-pyrolysis. Four criteria, namely, environmental, economic, technical, and socio-political have been considered for evaluation, with each of these having further sub-criteria. The 4 criteria, 17 sub-criteria, and the 6 alternatives are evaluated using AHP for two different cases: one for calculated weights based on the objective, and other assuming equal weights for each criterion and sub-criterion. The pairwise comparison matrices are formed using data collected from literature and the responses recorded from the questionnaire survey. The results are then synthesized to find the most appropriate process for managing yard waste. For both, case 1 and case 2, pelletization-gasification (PG) was the most promising technology followed by pelletization-pyrolysis (PP). Landfill (LF) and incineration (IN) technologies proved to be the least preferred alternatives for managing yard waste. Finally, a sensitivity analysis is performed to investigate the effect of variation in importance of different criteria on the final rankings of the technology alternatives.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Abba AH, Noor ZZ, Aliyu A, Medugu NI (2013) Assessing sustainable municipal solid waste management factors for Johor-Bahru by analytical hierarchy process. Adv Mater Res 689:540–545

    Article  Google Scholar 

  2. Annepu RK (2012) Sustainable solid waste management in India. Waste-to-Energy Res Technol Counc. Columbia University

  3. Armi M, Samah A, Manaf LA, Zukki M (2010) Application of AHP model for evaluation of solid waste treatment technology. Int J Tech Sci 1:35–40

    Google Scholar 

  4. Ashwekar P, Jiang Y, Pan H (2017) Feasibility study of energy recovery by incineration—a case study of the triangle wastewater treatment plant. Duke University

  5. Asnani PU (2006) Solid waste management. India Infrastructure Report. Oxford University Press, New Delhi, pp 160–188

    Google Scholar 

  6. Axelsson C, Kvarnström T (2010) Energy from municipal solid waste in Chennai, India—a feasibility study

  7. Babalola MA (2015) A multi-criteria decision analysis of waste treatment options for food and biodegradable waste management in Japan. Environments 2:471–488

    Article  Google Scholar 

  8. Belgiorno V, De Feo G, Della Rocca C, Napoli RMA (2003) Energy from gasification of solid wastes. Waste Manag 23:1–15

    Article  Google Scholar 

  9. Boldrin A (2009) Environmental assessment of garden waste management. Technical University of Denmark

  10. ChaoKe, Hanchao Y, Dang F (2013) Application of AHP in selection of wind farm’s location. Int J Energy Sci 3:18–22

    Google Scholar 

  11. Chatzimouratidis AI, Pilavachi PA (2007) Objective and subjective evaluation of power plants and their non-radioactive emissions using the analytic hierarchy process. Energy Policy 35:4027–4038

    Article  Google Scholar 

  12. Chen Y-T (2016) A cost analysis of food waste composting in Taiwan. Sustainability 8:1–13

    Google Scholar 

  13. Chen WH, Peng J, Bi XT (2015) A state-of-the-art review of biomass torrefaction, densification and applications. Renew Sust Energ Rev 44:847–866

    Article  Google Scholar 

  14. Chhabra V, Shastri Y, Bhattacharya S (2016) Kinetics of pyrolysis of mixed municipal solid waste—a review. Procedia Environ Sci 35:513–527

    Article  Google Scholar 

  15. Database of Waste Management Technologies [WWW Document], Accessed 14 June 2018. Waste Control

  16. Department of Environment, Government of NCT of Delhi [WWW Document] Accessed 2 Oct 2018. http://www.delhi.gov.in/wps/wcm/connect/environment/Environment/Home/Campaign/Burning+of+leaves

  17. Durgekar V (2016) Towards sustainable waste management through technological innovations, effective policy, supply chain integration & participation. Procedia Environ Sci 35:140–149

    Article  Google Scholar 

  18. Eilrich FC, Doeksen G, Van Fleet H (2003) An economic analysis of landfill costs to demonstrate the economies of size and determine the feasibility of a community owned landfill in rural Oklahoma. Southern Agricultural Economics Association Annual Meeting. Alabama, p 1–21

  19. Fernández-González JM, Grindlay AL, Serrano-Bernardo F, Rodríguez-Rojas MI, Zamorano M (2017) Economic and environmental review of waste-to-energy systems for municipal solid waste management in medium and small municipalities. Waste Manag 67:360–374

    Article  Google Scholar 

  20. FICCI (2009) Survey on the current status of municipal solid waste management in Indian cities and the potential of landfill gas to energy projects in India. New Delhi

  21. Ghosh SK (2016) Sustainable SWM in developing countries focusing on faster growing economies, India and China. Procedia Environ Sci 35:176–184

    Article  Google Scholar 

  22. Ghosh R, Kansal A (2014) Urban challenges in India and the mission for a sustainable habitat. Interdisciplina 2:281–304

    Google Scholar 

  23. Gidde, M., Kokate, K., Todkar, V., 2008. Municipal solid waste management in emerging mega cities: a case study of Pune City, In: Indo Italian Conference on Green and Clean Environment. Pune, p 441–450

  24. Gumisiriza R, Hawumba JF, Okure M, Hensel O (2017) Biomass waste-to-energy valorisation technologies: a review case for banana processing in Uganda. Biotechnol Biofuels 10:1–29

    Article  Google Scholar 

  25. Gupta N, Yadav KK, Kumar V (2015) A review on current status of municipal solid waste management in India. J Environ Sci 37:206–217

    Article  Google Scholar 

  26. Hornung A, Apfelbacher A, Sagi S (2011) Intermediate pyrolysis: a sustainable biomass-to-energy concept-biothermal valorisation of biomass (BtVB) process. J Sci Ind Res (India) 70:664–667

    Google Scholar 

  27. Ishizaka A, Labib A (2009) Analytic hierarchy process and expert choice: benefits and limitations. OR Insight 22:201–220

    Article  Google Scholar 

  28. Jaber J, Jaber Q, Sawalha S, Mohsen M (2008) Evaluation of conventional and renewable energy sources for space heating in the household sector. Renew Sust Energ Rev 12:278–289

    Article  Google Scholar 

  29. Jha AK, Singh SK, Singh GP, Gupta PK (2011) Sustainable municipal solid waste management in low income group of cities: a review. Trop Ecol 52:123–131

    Google Scholar 

  30. Joshi R, Ahmed S (2016) Status and challenges of municipal solid waste management in India: a review. Cogent Environ Sci 2:1–18

    Article  Google Scholar 

  31. Jouhara H, Czajczyńska D, Ghazal H, Krzyżyńska R, Anguilano L, Reynolds AJ, Spencer N (2017) Municipal waste management systems for domestic use. Energy 139:485–506

    Article  Google Scholar 

  32. Kahraman C, Kaya I (2010) A fuzzy multicriteria methodology for selection among energy alternatives. Expert Syst Appl 37:6270–6281

    Article  Google Scholar 

  33. Kaliyan N, Morey RV (2010) Natural binders and solid bridge type binding mechanisms in briquettes and pellets made from corn stover and switchgrass. Bioresour Technol 101:1082–1090

    Article  Google Scholar 

  34. Kim M, Jang YC, Lee S (2013) Application of Delphi-AHP methods to select the priorities of WEEE for recycling in a waste management decision-making tool. J Environ Manag 128:941–948

    Article  Google Scholar 

  35. Kumar S, Smith SR, Fowler G, Velis C, Kumar SJ, Arya S, Kumar R, Cheeseman C (2017) Challenges and opportunities associated with waste management in India. R Soc Open Sci 4:1–20

    Article  Google Scholar 

  36. Madadian E, Amiri L, Abdoli MA (2013) Application of analytic hierarchy process and multicriteria decision analysis on waste management: a case study in Iran. Environ Prog Sustain Energy 32:810–820

    Article  Google Scholar 

  37. Marshall RE, Farahbakhsh K (2013) Systems approaches to integrated solid waste management in developing countries. Waste Manag 33:988–1003

    Article  Google Scholar 

  38. Melaré V d SA, Montenegro González S, Faceli K, Casadei V (2017) Technologies and decision support systems to aid solid-waste management: a systematic review. Waste Manag 59:567–584

    Article  Google Scholar 

  39. Mohanty CR, Mishra U, Beuria PR (2014) Municipal solid waste management in Bhubaneswar, India—a review. Int J Latest Trends Eng Technol 3:303–312

    Google Scholar 

  40. Pandey S, Malik JK (2015) Industrial and urban waste management in India. New Delhi

  41. Potdar A, Singh A, Unnnikrishnan S, Naik N, Naik M, Nimkar I (2016) Innovation in solid waste management through clean development mechanism in India and other countries. Process Saf Environ Prot 101:160–169

    Article  Google Scholar 

  42. Pradhan P, Arora A, Mahajani SM (2018) Pilot scale evaluation of fuel pellets production from garden waste biomass. Energy Sustain Dev 43:1–14

    Article  Google Scholar 

  43. Report of the Task Force on Waste to Energy (2014) New Delhi

  44. Rural empowerment through biogas entrepreneurship [WWW Document], Accessed 14 June 2018. IIT Delhi. URL http://www.web.iitd.ac.in/.../Entrepreneurship%2520Models%2520on%2520 Biogas%2520for%2520Rural%25

  45. Rynk R (2008) Monitoring moisture in composting systems. Biocycle:24–30

  46. Saaty TL (1980) The analytic hierarchy process. McGraw Hill, New York

    MATH  Google Scholar 

  47. Saaty TL (1990) How to make a decision: the analytic hierarchy process. Eur J Oper Res 48:9–26

    Article  MATH  Google Scholar 

  48. Saaty TL, Hu G (1998) Ranking by eigenvector versus other methods in the analytic hierarchy process. Appl Math Lett 11:121–125

    MathSciNet  Article  MATH  Google Scholar 

  49. Saaty T, Vargas L (2000) Models, methods, concepts and applications of the analytic hierarchy process. Kluwer Academic Publishers, Boston

    MATH  Google Scholar 

  50. Saini S, Rao P, Patil Y (2012) City based analysis of MSW to energy generation in India, calculation of state-wise potential and tariff comparison with EU. Procedia - Soc. Behav Sci 37:407–416

    Google Scholar 

  51. Samah MAA, Manaf LA, Aris AZ, Sulaiman WNA (2011) Solid waste management: analytical hierarchy process (AHP) application of selecting treatment technology in Sepang Municipal Council, Malaysia. Curr. World Enviroment 6:1–16

    Google Scholar 

  52. Shamshiry E, Mokhtar MB, Abdulai AM, Komoo I (2015) Using the analytic hierarchy process to enhance sustainable solid waste management: case study of Langkawi Island, Malaysia. Environ Qual Manag 24:51–65

    Article  Google Scholar 

  53. Sharholy M, Ahmad K, Mahmood G, Trivedi RC (2008) Municipal solid waste management in Indian cities—a review. Waste Manag 28:459–467

    Article  Google Scholar 

  54. Suriapparao DV, Vinu R (2015) Bio-oil production via catalytic microwave pyrolysis of model municipal solid waste component mixtures. RSC Adv 5:57619–57631

    Article  Google Scholar 

  55. Thengane SK, Hoadley A, Bhattacharya S, Mitra S, Bandyopadhyay S (2014) Cost-benefit analysis of different hydrogen production technologies using AHP and fuzzy AHP. Int J Hydrog Energy 39:15293–15306

    Article  Google Scholar 

  56. Tumuluru JS, Wright CT, Hess JR, Kenney KL (2011) A review of biomass densification systems to develop uniform feedstock commodities for bioenergy application. Biofuels Bioprod Biorefin 5:683–707

    Article  Google Scholar 

  57. Wang L, Chu J, Wu J (2007) Selection of optimum maintenance strategies based on a fuzzy analytic hierarchy process. Int J Prod Econ 107:151–163

    Article  Google Scholar 

  58. Yap HY, Nixon JD (2015) A multi-criteria analysis of options for energy recovery from municipal solid waste in India and the UK. Waste Manag 46:265–271

    Article  Google Scholar 

Download references

Acknowledgements

This research has been funded by the Tata Centre for Technology and Design, Indian Institute of Technology Bombay, India, through project DGDON 422.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sonal K. Thengane.

Ethics declarations

Conflict of Interest

The corresponding author states that there is no conflict of interest.

Appendix

Appendix

Pairwise comparison matrices for remaining 16 sub-criteria.

Volume reduction (VR)
  CT IN LF AD PG PP Priority vector
CT 1 1/4 1/5 1/2 1/6 1/3 0.043
IN 4 1 1/2 3 1/3 2 0.112
LF 5 2 1 4 1/2 3 0.376
AD 2 1/3 1/4 1 1/5 1/2 0.053
PG 6 3 2 5 1 4 0.259
PP 3 1/2 1/3 2 1/4 1 0.156
λmax = 6.24, CI = 0.04
Utility consumption (UC)
  CT IN LF AD PG PP Priority vector
CT 1 3 1/7 1/4 1/6 1/5 0.045
IN 1/3 1 1/9 1/6 1/8 1/7 0.025
LF 7 9 1 4 2 3 0.387
AD 4 6 1/4 1 1/3 1/2 0.115
PG 6 8 1/2 3 1 2 0.258
PP 5 7 1/3 2 1/2 1 0.170
λmax = 6.24, CI = 0.049
Safety & user-friendliness (SU)
  CT IN LF AD PG PP Priority vector
CT 1 2 7 5 3 4 0.383
IN 1/2 1 6 4 2 3 0.251
LF 1/7 1/6 1 1/3 1/5 1/4 0.034
AD 1/5 1/4 3 1 1/3 1/2 0.067
PG 1/3 1/2 5 3 1 2 0.161
PP 1/4 1/3 4 2 1/2 1 0.103
λmax = 6.16, CI = 0.032
Scalability potential (SP)
  CT IN LF AD PG PP Priority vector
CT 1 1/2 1/5 2 1/4 1/3 0.064
IN 2 1 1/4 3 1/2 1/3 0.102
LF 5 4 1 6 2 3 0.382
AD 1/2 1/3 1/6 1 1/5 1/4 0.043
PG 4 2 1/2 5 1 2 0.234
PP 3 3 1/3 4 1/2 1 0.176
λmax = 6.17, CI = 0.035
Capital cost (CC)
  CT IN LF AD PG PP Priority vector
CT 1 7 8 9 3 4 0.461
IN 1/7 1 2 3 1/5 1/4 0.062
LF 1/8 1/2 1 2 1/6 1/5 0.042
AD 1/9 1/3 1/2 1 1/7 1/6 0.029
PG 1/3 5 6 7 1 2 0.239
PP 1/4 4 5 6 1/2 1 0.166
λmax = 6.25, CI = 0.05
Annual O & M cost (OC)
  CT IN LF AD PG PP Priority vector
CT 1 3 5 1/5 1/3 1/4 0.090
IN 1/3 1 3 1/7 1/5 1/6 0.046
LF 1/5 1/3 1 1/9 1/7 1/8 0.026
AD 5 7 9 1 3 2 0.394
PG 3 5 7 1/3 1 1/2 0.179
PP 4 6 8 1/2 2 1 0.265
λmax = 6.26, CI = 0.05
Land area (LA)
  CT IN LF AD PG PP Priority vector
CT 1 1/4 1/2 1/6 1/9 1/8 0.028
IN 4 1 3 1/3 1/6 1/5 0.077
LF 2 1/3 1 1/5 1/8 1/7 0.039
AD 6 3 5 1 1/4 1/3 0.150
PG 9 6 8 4 1 2 0.417
PP 8 5 7 3 1/2 1 0.291
λmax = 6.27, CI = 0.05
Payback period (PP)
  CT IN LF AD PG PP Priority vector
CT 1 3 7 2 1/3 1/2 0.177
IN 1/3 1 5 1/2 1/5 1/4 0.070
LF 1/7 1/5 1 1/6 1/9 1/8 0.025
AD 1/2 2 6 1 1/4 1/3 0.099
PG 3 5 9 4 1 2 0.379
PP 2 4 8 3 1/2 1 0.250
λmax = 6.27, CI = 0.05
Product demand (PD)
  CT IN LF AD PG PP Priority vector
CT 1 5 9 3 2 4 0.383
IN 1/5 1 5 1/3 1/4 1/2 0.071
LF 1/9 1/5 1 1/7 1/8 1/6 0.025
AD 1/3 3 7 1 1/2 2 0.163
PG 1/2 4 8 2 1 3 0.253
PP 1/4 2 6 1/2 1/3 1 0.106
λmax = 6.21, CI = 0.04
Load on fossil fuels (LF)
  CT IN LF AD PG PP Priority vector
CT 1 1/2 2 1/4 1/5 1/3 0.064
IN 2 1 3 1/3 1/4 1/2 0.101
LF 1/2 1/3 1 1/5 1/6 1/4 0.043
AD 4 3 5 1 1/2 2 0.250
PG 5 4 6 2 1 3 0.382
PP 3 2 4 1/2 1/3 1 0.160
λmax = 6.12, CI = 0.024
Pollution and emissions (PE)
  CT IN LF AD PG PP Priority vector
CT 1 7 4 5 3 1/2 0.292
IN 1/7 1 1/3 1/5 1/4 1/8 0.030
LF 1/4 3 1 1/3 1/2 1/6 0.060
AD 1/5 5 3 1 2 1/4 0.126
PG 1/3 4 2 1/2 1 1/5 0.090
PP 2 8 6 4 5 1 0.402
λmax = 6.31, CI = 0.06
Residue disposal (RD)
  CT IN LF AD PG PP Priority vector
CT 1 1/3 3 1/5 1/7 1/6 0.046
IN 3 1 5 1/3 1/5 1/4 0.090
LF 1/3 1/5 1 1/7 1/9 1/8 0.026
AD 5 3 7 1 1/3 1/2 0.179
PG 7 5 9 3 1 2 0.394
PP 6 4 8 2 1/2 1 0.265
λmax = 6.26 CI = 0.05
Policy & subsidy (PS)
  CT IN LF AD PG PP Priority vector
CT 1 9 6 2 3 4 0.412
IN 1/9 1 1/4 1/8 1/7 1/6 0.025
LF 1/6 4 1 1/5 1/4 1/3 0.055
AD 1/2 8 5 1 2 3 0.237
PG 1/3 7 4 1/2 1 2 0.163
PP 1/4 6 3 1/3 1/2 1 0.108
λmax = 6.3, CI = 0.06
Health impact (HI)
  CT IN LF AD PG PP Priority vector
CT 1 4 2 1/3 1/4 1/2 0.109
IN 1/4 1 1/3 1/6 1/7 1/5 0.034
LF 1/2 3 1 1/4 1/5 1/3 0.068
AD 3 6 4 1 1/2 2 0.255
PG 4 7 5 2 1 3 0.370
PP 2 5 3 1/2 1/3 1 0.164
λmax = 6.16, CI = 0.032
Community acceptance (CA)
  CT IN LF AD PG PP Priority vector
CT 1 1/2 4 3 1/4 1/3 0.108
IN 2 1 5 4 1/3 1/2 0.165
LF 1/4 1/5 1 1/2 1/7 1/6 0.035
AD 1/3 1/4 2 1 1/6 1/5 0.051
PG 4 3 7 6 1 2 0.386
PP 3 2 6 5 1/2 1 0.255
λmax = 6.165, CI = 0.033
Employment (EM)
  CT IN LF AD PG PP Priority vector
CT 1 4 1/3 1/2 1/5 1/4 0.073
IN 1/4 1 1/6 1/5 1/8 1/7 0.029
LF 3 6 1 2 1/3 1/2 0.164
AD 2 5 1/2 1 1/4 1/3 0.106
PG 5 8 3 4 1 2 0.374
PP 4 7 2 3 1/2 1 0.255
λmax = 6.2, CI = 0.04

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Thengane, S.K. Assessment of Different Technologies for Managing Yard Waste Using Analytic Hierarchy Process. Process Integr Optim Sustain 3, 255–272 (2019). https://doi.org/10.1007/s41660-018-0070-1

Download citation

Keywords

  • Yard waste
  • Analytic hierarchy process
  • Waste management
  • Multi-criteria decision making
  • Pelletization-Gasification