Skip to main content

Landslide Susceptibility Zonation of Idukki District Using GIS in the Aftermath of 2018 Kerala Floods and Landslides: a Comparison of AHP and Frequency Ratio Methods

Abstract

This study aims to demarcate landslide susceptible zones using methods of analytical hierarchy process (AHP) and frequency ratio (FR) to find the most influencing factors and to compare their prediction capability. Ten causative factors (slope angle, elevation, lithology, land use/land cover types, normalized difference moisture index, road buffer, normalized difference built-up index, water ratio index, stream power index, and soil) are used in the study. The area of the landslide susceptibility was grouped into five classes. According to the landslide susceptibility maps prepared using the AHP and FR methods, 11.14% and 6.57% of the area are very highly susceptible to landslides. Finally, the receiver operating characteristic (ROC) curves for the landslide susceptibility maps prepared using both AHP and FR methods were plotted, and the area under the ROC curve (AUC) values were estimated to validate the results. AUC values of 0.69 and 0.81 were estimated for the landslide susceptible zone maps prepared using AHP and FR, respectively. From the AUC values, it is confirmed that the FR method is more effective in predicting the landslide susceptible zones in Idukki district. The landslide susceptibility maps are helpful for land use planners and policy makers in adopting suitable mitigation measures to minimize the impacts of landslides and thereby reduce loss of life and property.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. Abraham MT, Pothuraju D, Satyam N (2019) Rainfall thresholds for prediction of landslides in Idukki, India: an empirical approach. Water 11(10). https://doi.org/10.3390/w11102113

  2. Abraham MT, Satyam N, Shreyas N, Pradhan B, Segoni S, Maulud KNA, Alamri AM (2021) Forecasting landslides using SIGMA model: a case study from Idukki, India. Geomat Nat Haz Risk 12(1):540–559. https://doi.org/10.1080/19475705.2021.1884610

    Article  Google Scholar 

  3. Achour Y, Boumezbeur A, Hadji R, Chouabbi A, Cavaleiro V, Bendaoud EA (2017) Landslide susceptibility mapping using analytic hierarchy process and information value methods along a highway road section in Constantine, Algeria. Arabian Journal of Geosciences 10(194). https://doi.org/10.1007/s12517-017-2980-6

  4. Achu AL, Joseph S, Aju CD, Mathai J (2021) Preliminary analysis of a catastrophic landslide event on 6 August 2020 at Pettimudi, Kerala State, India. Landslides 18:1459–1463. https://doi.org/10.1007/s10346-020-01598-x

    Article  Google Scholar 

  5. Aghda SMF, Bagheri V, Razifard M (2018) Landslide susceptibility mapping using fuzzy logic system and its influences on mainlines in Lashgarak region, Tehran. Iran Geotechnical and Geological Engineering 36(2):915–937. https://doi.org/10.1007/s10706-017-0365-y

    Article  Google Scholar 

  6. Aimaiti Y, Liu W, Yamazaki F, Maruyama Y (2019) Earthquake-induced landslide mapping for the 2018 Hokkaido Eastern Iburi earthquake using PALSAR-2 data. Remote Sensing 11(20). https://doi.org/10.3390/rs11202351

  7. Ajin RS, Loghin AM, Vinod PG, Jacob MK, Krishnamurthy KK (2016) Landslide susceptible zone mapping using ARS and GIS techniques in selected taluks of Kottayam district, Kerala, India. International Journal of Applied Remote Sensing and GIS 3(1):16–25

    Google Scholar 

  8. Althuwaynee OF, Pradhan B, Park HJ, Lee JH (2014) A novel ensemble bivariate statistical evidential belief function with knowledge-based analytical hierarchy process and multivariate statistical logistic regression for landslide susceptibility mapping. CATENA 114:21–36. https://doi.org/10.1016/j.catena.2013.10.011

    Article  Google Scholar 

  9. Anbalagan R (1992) Landslide hazard evaluation and zonation mapping in mountainous terrain. Eng Geol 32:269–277. https://doi.org/10.1016/0013-7952(92)90053-2

    Article  Google Scholar 

  10. Cancela J, Fico G, Arredondo Waldmeyer MT (2015) Using the analytic hierarchy process (AHP) to understand the most important factors to design and evaluate a telehealth system for Parkinson’s disease. BMC Med Inform Decis Mak 15:S7. https://doi.org/10.1186/1472-6947-15-S3-S7

    Article  Google Scholar 

  11. Cardinali M, Galli M, Guzzetti F, Ardizzone F, Reichenbach P, Bartoccini P (2006) Rainfall induced landslides in December 2004 in south-western Umbria, central Italy: types, extent, damage and risk assessment. Nat Hazard 6:237–260

    Article  Google Scholar 

  12. Chawla A, Chawla S, Pasupuleti S, Rao ACS, Sarkar K, Dwivedi R (2018) Landslide susceptibility mapping in Darjeeling Himalayas. Advances in Civil Engineering, India. https://doi.org/10.1155/2018/6416492

    Book  Google Scholar 

  13. Chen W, Han H, Huang B, Huang Q, Fu X (2018) A data-driven approach for landslide susceptibility mapping: a case study of Shennongjia Forestry District. China, Geomatics, Natural Hazards and Risk 9(1):720–736. https://doi.org/10.1080/19475705.2018.1472144

    Article  Google Scholar 

  14. Chen W, Li W, Chai H, Hou E, Li X, Ding X (2016) GIS-based landslide susceptibility mapping using analytical hierarchy process (AHP) and certainty factor (CF) models for the Baozhong region of Baoji city, China. Environmental Earth Sciences 75(63). https://doi.org/10.1007/s12665-015-4795-7

  15. Cruden DM (1991) A simple definition of a landslide. Bull Eng Geol Env 43(1):27–29

    Google Scholar 

  16. Dahoua L, Yakovitch SV, Hadji R, Farid Z (2018) Landslide susceptibility mapping using analytic hierarchy process method in BBA-Bouira Region, case study of East-West Highway, NE Algeria. In: Kallel A, Ksibi M, Ben Dhia H, Khélifi N (eds) Recent advances in environmental science from the Euro-Mediterranean and surrounding regions. EMCEI 2017. Advances in Science, Technology & Innovation (IEREK Interdisciplinary Series for Sustainable Development). Springer, Switzerland: pp 1837–1840. https://doi.org/10.1007/978-3-319-70548-4_532

  17. Dai FC, Lee CF (2002) Landslide characteristics and slope instability modeling using GIS, Lantau Island. Hong Kong Geomorphology 42(3–4):213–228. https://doi.org/10.1016/S0169-555X(01)00087-3

    Article  Google Scholar 

  18. Danumah JH, Odai SN, Saley BM, Szarzynski J, Thiel M, Kwaku A, Kouame FK, Akpa LY (2016) Flood risk assessment and mapping in Abidjan district using multi-criteria analysis (AHP) model and geoinformation techniques, (cote d’ivoire). Geoenvironmental Disasters 3.https://doi.org/10.1186/s40677-016-0044-y

  19. Demir G, Aytekin M, Akgün A, İkizler SB, Tatar O (2013) A comparison of landslide susceptibility mapping of the eastern part of the North Anatolian Fault Zone (Turkey) by likelihood-frequency ratio and analytic hierarchy process methods. Nat Hazards 65:1481–1506. https://doi.org/10.1007/s11069-012-0418-8

    Article  Google Scholar 

  20. Devara M, Tiwari A, Dwivedi R (2021) Landslide susceptibility mapping using MT-InSAR and AHP enabled GIS-based multi-criteria decision analysis. Geomat Nat Haz Risk 12(1):675–693. https://doi.org/10.1080/19475705.2021.1887939

    Article  Google Scholar 

  21. Ehret D, Rohn J, Dumperth C, Eckstein S, Ernstberger S, Otte K, Rudolph R, Wiedenmann J, Xiang W, Bi R (2010) Frequency ratio analysis of mass movements in the Xiangxi catchment, Three Gorges Reservoir area, China. Journal of Earth Science 21:824–834. https://doi.org/10.1007/s12583-010-0134-9

    Article  Google Scholar 

  22. El Jazouli A, Barakat A, Khellouk R (2019) GIS-multicriteria evaluation using AHP for landslide susceptibility mapping in Oum Er Rbia high basin (Morocco). Geoenvironmental Disasters 6(3). https://doi.org/10.1186/s40677-019-0119-7

  23. Elmoulat M, Ait Brahim L (2018) Landslides susceptibility mapping using GIS and weights of evidence model in Tetouan-Ras-Mazari area (Northern Morocco). Geomat Nat Haz Risk 9(1):1306–1325. https://doi.org/10.1080/19475705.2018.1505666

    Article  Google Scholar 

  24. Emrouznejad A, Marra M (2017) The state of the art development of AHP (1979–2017): a literature review with a social network analysis. Int J Prod Res 55(22):6653–6675. https://doi.org/10.1080/00207543.2017.1334976

    Article  Google Scholar 

  25. Gao BC (1996) NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens Environ 58(3):257–266. https://doi.org/10.1016/S0034-4257(96)00067-3

    Article  Google Scholar 

  26. García-Rodríguez MJ, Malpica JA, Benito B, Díaz M (2008) Susceptibility assessment of earthquake-triggered landslides in El Salvador using logistic regression. Geomorphology 95(3–4):172–191. https://doi.org/10.1016/j.geomorph.2007.06.001

    Article  Google Scholar 

  27. Geertsema M, Highland L, Vaugeouis L (2009) Environmental impact of landslides. In: Sassa K, Canuti P (eds) Landslides – Disaster Risk Reduction. Springer, Berlin, Heidelberg, pp: 589–607. https://doi.org/10.1007/978-3-540-69970-5_31

  28. Guzzetti F, Mondini AC, Cardinali M, Fiorucci F, Santangelo M, Chang KT (2012) Landslide inventory maps: new tools for an old problem. Earth-Science Reviews 112: 42–66. https://doi.org/10.1016/j.earscirev.2012.02.001

  29. Hamza T, Raghuvanshi TK (2017) GIS based landslide hazard evaluation and zonation – a case from Jeldu district, Central Ethiopia. Journal of King Saud University – Science 29(2): 151–165. https://doi.org/10.1016/j.jksus.2016.05.002

  30. Hemasinghe H, Rangali RSS, Deshapriya NL, Samarakoon L (2018) Landslide susceptibility mapping using logistic regression model (a case study in Badulla district, Sri Lanka). Procedia Engineering 212:1046–1053. https://doi.org/10.1016/j.proeng.2018.01.135

    Article  Google Scholar 

  31. Hong Y, Adler RF, Huffman GJ (2007) Satellite remote sensing for global landslide monitoring. EOS Trans Am Geophys Union 88(37):357–368

    Article  Google Scholar 

  32. Huang F, Yao C, Liu W, Li Y, Liu X (2018) Landslide susceptibility assessment in the Nantian area of China: a comparison of frequency ratio model and support vector machine. Geomat Nat Haz Risk 9(1):919–938. https://doi.org/10.1080/19475705.2018.1482963

    Article  Google Scholar 

  33. Ibrahim GRF (2017) Urban land use land cover changes and their effect on land surface temperature: case study using Dohuk City in the Kurdistan Region of Iraq. Climate 5(1). https://doi.org/10.3390/cli5010013

  34. Jaafari A, Najafi A, Pourghasemi HR, Rezaeian J, Sattarian A (2014) GIS-based frequency ratio and index of entropy models for landslide susceptibility assessment in the Caspian forest, northern Iran. Int J Environ Sci Technol 11(4):909–926. https://doi.org/10.1007/s13762-013-0464-0

    Article  Google Scholar 

  35. Kanungo DP, Arora MK, Sarkar S, Gupta RP (2006) A comparative study of conventional, ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling Himalayas. Eng Geol 85(3–4):347–366. https://doi.org/10.1016/j.enggeo.2006.03.004

    Article  Google Scholar 

  36. Kanungo DP, Arora MK, Sarkar S, Gupta RP (2009) Landslide susceptibility zonation (LSZ) mapping - a review. Journal of South Asia Disaster Studies 2(1):81–105

    Google Scholar 

  37. Kanungo DP, Singh R, Dash RK (2020) Field observations and lessons learnt from the 2018 landslide disasters in Idukki district, Kerala. India Current Science 119(11):1797–1806

    Article  Google Scholar 

  38. Karsli F, Atasoy M, Yalcin A, Reis S, Demir O, Gokceoglu C (2009) Effects of land-use changes on landslides in a landslide-prone area (Ardesen, Rize, NE Turkey). Environ Monit Assess 156:241–255. https://doi.org/10.1007/s10661-008-0481-5

    Article  Google Scholar 

  39. Kaur H, Gupta S, Parkash S (2017) Comparative evaluation of various approaches for landslide hazard zoning: a critical review in Indian perspectives. Spat Inf Res 25(3):389–398. https://doi.org/10.1007/s41324-017-0105-7

    Article  Google Scholar 

  40. Kayastha P, Dhital MR, De Smedt F (2012) Landslide susceptibility mapping using the weight of evidence method in the Tinau watershed. Nepal Natural Hazards 63(2):479–498. https://doi.org/10.1007/s11069-012-0163-z

    Article  Google Scholar 

  41. Khan H, Shafique M, Khan MA, Bacha MA, Shah SU, Calligaris C (2019) Landslide susceptibility assessment using frequency ratio, a case study of northern Pakistan. The Egyptian Journal of Remote Sensing and Space Science 22(1):11–24. https://doi.org/10.1016/j.ejrs.2018.03.004

    Article  Google Scholar 

  42. Kouhpeima A, Feiznia S, Ahmadi H, Moghadamnia AR (2017) Landslide susceptibility mapping using logistic regression analysis in Latyan catchment. Desert 22(1): 85–95. https://doi.org/10.22059/jdesert.2017.62181

  43. Kumar R, Anbalagan R (2016) Landslide susceptibility mapping using analytical hierarchy process (AHP) in Tehri reservoir rim region, Uttarakhand. J Geol Soc India 87(3):271–286. https://doi.org/10.1007/s12594-016-0395-8

    Article  Google Scholar 

  44. Kumar MK, Annadurai R (2015) Comparison of frequency ratio model and analytic hierarchy process methods upon landslide susceptibility mapping using geospatial techniques. Disaster Advances 8(5):46–55

    Google Scholar 

  45. Kumar D, Thakur M, Dubey CS, Shukla DP (2017) Landslide susceptibility mapping & prediction using support vector machine for Mandakini river basin, Garhwal Himalaya, India. Geomorphology 295:115–125. https://doi.org/10.1016/j.geomorph.2017.06.013

    Article  Google Scholar 

  46. Lee S (2007) Landslide susceptibility mapping using an artificial neural network in the Gangneung area. Korea International Journal of Remote Sensing 28(21):4763–4783. https://doi.org/10.1080/01431160701264227

    Article  Google Scholar 

  47. Lee S, Pradhan B (2006) Probabilistic landslide hazards and risk mapping on Penang Island, Malaysia. J Earth Syst Sci 115:661–672. https://doi.org/10.1007/s12040-006-0004-0

    Article  Google Scholar 

  48. Lee S, Talib JA (2005) Probabilistic landslide susceptibility and factor effect analysis. Environmental Geology 47:982–990. https://doi.org/10.1007/s00254-005-1228-z

    Article  Google Scholar 

  49. Lee S, Choi J, Min K (2004) Probabilistic landslide hazard mapping using GIS and remote sensing data at Boun. Korea International Journal of Remote Sensing 25(11):2037–2052. https://doi.org/10.1080/01431160310001618734

    Article  Google Scholar 

  50. Lee ML, Ng KY, Huang YF, Li WC (2014) Rainfall-induced landslides in Hulu Kelang area. Malaysia Natural Hazards 70(1):353–375. https://doi.org/10.1007/s11069-013-0814-8

    Article  Google Scholar 

  51. Li F, He H (2018) Assessing the accuracy of diagnostic tests. Shanghai Archives of Psychiatry 30(3): 207–212. https://doi.org/10.11919/j.issn.1002-0829.218052

  52. Melo F (2013) Area under the ROC curve. In: Dubitzky W, Wolkenhauer O, Cho KH, Yokota H (eds) Encyclopedia of Systems Biology. Springer, New York. https://doi.org/10.1007/978-1-4419-9863-7_209

  53. Moore ID, Grayson RB, Ladson AR (1991) Digital terrain modelling: a review of hydrological, geomorphological, and biological applications. Hydrol Process 5(1):3–30. https://doi.org/10.1002/hyp.3360050103

    Article  Google Scholar 

  54. Myronidis D, Papageorgiou C, Theophanous S (2016) Landslide susceptibility mapping based on landslide history and analytic hierarchy process (AHP). Nat Hazards 81(1):245–263. https://doi.org/10.1007/s11069-015-2075-1

    Article  Google Scholar 

  55. Nakamura S, Wakai A, Umemura J, Sugimoto H, Takeshi T (2014) Earthquake-induced landslides: distribution, motion and mechanisms. Soils Found 54(4):544–559. https://doi.org/10.1016/j.sandf.2014.06.001

    Article  Google Scholar 

  56. Nakileza BR, Nedala S (2020) Topographic influence on landslides characteristics and implication for risk management in upper Manafwa catchment, Mt Elgon Uganda. Geoenvironmental Disasters 7.https://doi.org/10.1186/s40677-020-00160-0

  57. Oh HJ, Pradhan B (2011) Application of a neuro-fuzzy model to landslide-susceptibility mapping for shallow landslides in a tropical hilly area. Comput Geosci 37(9):1264–1276. https://doi.org/10.1016/j.cageo.2010.10.012

    Article  Google Scholar 

  58. Oh HJ, Lee S, Hong SM (2017) Landslide susceptibility assessment using frequency ratio technique with iterative random sampling. Journal of Sensors. https://doi.org/10.1155/2017/3730913

    Article  Google Scholar 

  59. Oh HJ, Kadavi PR, Lee CW, Lee S (2018) Evaluation of landslide susceptibility mapping by evidential belief function, logistic regression and support vector machine models. Geomat Nat Haz Risk 9(1):1053–1070. https://doi.org/10.1080/19475705.2018.1481147

    Article  Google Scholar 

  60. Ortiz JAV, Martínez-Graña AM (2018) A neural network model applied to landslide susceptibility analysis (Capitanejo, Colombia). Geomat Nat Haz Risk 9(1):1106–1128. https://doi.org/10.1080/19475705.2018.1513083

    Article  Google Scholar 

  61. Park SJ, Lee CW, Lee S, Lee MJ (2018) Landslide susceptibility mapping and comparison using decision tree models: a case study of Jumunjin area, Korea. Remote Sens 10.https://doi.org/10.3390/rs10101545

  62. Pham VD, Nguyen Q, Nguyen H, Pham V, Vu VM, Bui Q (2020) Convolutional neural network—optimized moth flame algorithm for shallow landslide susceptible analysis. IEEE Access 8:32727–32736. https://doi.org/10.1109/ACCESS.2020.2973415

    Article  Google Scholar 

  63. Pourghasemi HR, Mohammady M, Pradhan B (2012a) Landslide susceptibility mapping using index of entropy and conditional probability models in GIS: Safarood Basin. Iran CATENA 97:71–84. https://doi.org/10.1016/j.catena.2012.05.005

    Article  Google Scholar 

  64. Pourghasemi HR, Pradhan B, Gokceoglu C (2012b) Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed. Iran Natural Hazards 63(2):965–996. https://doi.org/10.1007/s11069-012-0217-2

    Article  Google Scholar 

  65. Pourghasemi HR, Jirandeh AG, Pradhan B, Xu C, Gokceoglu C (2013) Landslide susceptibility mapping using support vector machine and GIS at the Golestan Province. Iran Journal of Earth System Science 122(2):349–369

    Article  Google Scholar 

  66. Pradhan B, Lee S (2010) Landslide susceptibility assessment and factor effect analysis: backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling. Environ Model Softw 25(6):747–759. https://doi.org/10.1016/j.envsoft.2009.10.016

    Article  Google Scholar 

  67. Pradhan B, Sezer EA, Gokceoglu C, Buchroithner MF (2010) Landslide susceptibility mapping by neuro-fuzzy approach in a landslide-prone area (Cameron Highlands, Malaysia). IEEE Trans Geosci Remote Sens 48(12):4164–4177. https://doi.org/10.1109/TGRS.2010.2050328

    Article  Google Scholar 

  68. Raghuvanshi TK, Ibrahim J, Ayalew D (2014) Slope stability susceptibility evaluation parameter (SSEP) rating scheme-an approach for landslide hazard zonation. J Afr Earth Sc 99(2):595–612. https://doi.org/10.1016/j.jafrearsci.2014.05.004

    Article  Google Scholar 

  69. Raghuvanshi TK, Negassa L, Kala PM (2015) GIS based grid overlay method versus modeling approach – a comparative study for landslide hazard zonation (LHZ) in Meta Robi district of West Showa Zone in Ethiopia. The Egyptian Journal of Remote Sensing and Space Sciences 18:235–250. https://doi.org/10.1016/j.ejrs.2015.08.001

    Article  Google Scholar 

  70. Ramachandran RM, Reddy CS (2017) Monitoring of deforestation and land use changes (1925–2012) in Idukki district, Kerala, India using remote sensing and GIS. Journal of the Indian Society of Remote Sensing 45:163–170. https://doi.org/10.1007/s12524-015-0521-x

    Article  Google Scholar 

  71. Rasyid AR, Bhandary NP, Yatabe R (2016) Performance of frequency ratio and logistic regression model in creating GIS based landslides susceptibility map at Lompobattang Mountain, Indonesia. Geoenvironmental Disasters 3.https://doi.org/10.1186/s40677-016-0053-x

  72. Ray RL, Jacobs JM (2007) Relationships among remotely sensed soil moisture, precipitation and landslide events. Nat Hazards 43:211–222. https://doi.org/10.1007/s11069-006-9095-9

    Article  Google Scholar 

  73. Resmi TR, Sudharma KV, Hameed AS (2016) Stable isotope characteristics of precipitation of Pamba river basin, Kerala, India. J Earth Syst Sci 125:1481–1493. https://doi.org/10.1007/s12040-016-0747-1

    Article  Google Scholar 

  74. Rostami ZA, Al-modaresi SA, Fathizad H, Faramarzi M (2016) Landslide susceptibility mapping by using fuzzy logic: a case study of Cham-gardalan catchment, Ilam, Iran. Arabian Journal of Geosciences 9(685). https://doi.org/10.1007/s12517-016-2720-3

  75. Roy J, Saha S (2019) Landslide susceptibility mapping using knowledge driven statistical models in Darjeeling District, West Bengal, India. Geoenvironmental Disasters 6.https://doi.org/10.1186/s40677-019-0126-8

  76. Russo RFSM, Camanho R (2015) Criteria in AHP: a systematic review of literature. Procedia Computer Science 55:1123–1132. https://doi.org/10.1016/j.procs.2015.07.081

    Article  Google Scholar 

  77. Saaty TL (1980) The analytic hierarchy process: planning, priority setting, resource allocation (decision making series). McGraw Hill, New York, United States of America

    Google Scholar 

  78. Sar N, Chatterjee S, Adhikari MD (2015) Integrated remote sensing and GIS based spatial modelling through analytical hierarchy process (AHP) for water logging hazard, vulnerability and risk assessment in Keleghai river basin, India. Model Earth Syst Environ 1.https://doi.org/10.1007/s40808-015-0039-9

  79. Sarkar S, Kanungo DP, Mehrotra GS (1995) Landslide hazard zonation: a case study of Gharwal Himalaya. India Mountain Research and Development 15(4):301–309

    Article  Google Scholar 

  80. Sartohadi J, Pulungan NAHJ, Nurudin M, Wahyudi W (2018) The ecological perspective of landslides at soils with high clay content in the Middle Bogowonto Watershed, Central Java, Indonesia. Applied and Environmental Soil Science. https://doi.org/10.1155/2018/2648185

  81. Sassa K, Fukuoka H, Scarascia-Mugnozza G, Evans S (1996) Earthquake-induced-landslides: distribution, motion and mechanisms. Soils Found 36:53–64. https://doi.org/10.3208/sandf.36.Special_53

    Article  Google Scholar 

  82. Semlali I, Ouadif L, Bahi L (2019) Landslide susceptibility mapping using the analytical hierarchy process and GIS. Curr Sci 116(5):773–779

    Article  Google Scholar 

  83. Senthilkumar V, Chandrasekaran SS, Maji VB (2018) Rainfall-induced landslides: case study of the Marappalam landslide, Nilgiris district, Tamil Nadu, India. International Journal of Geomechanics 18(9). https://doi.org/10.1061/(ASCE)GM.1943-5622.0001218

  84. Shahfahad, Kumari B, Tayyab M, Ahmed IA, Baig MRI, Khan MF, Rahman (2020) A longitudinal study of land surface temperature (LST) using mono- and split-window algorithms and its relationship with NDVI and NDBI over selected metro cities of India. Arab J Geosci 13.https://doi.org/10.1007/s12517-020-06068-1

  85. Shahri AA, Spross J, Johansson F, Larsson S (2019) Landslide susceptibility hazard map in southwest Sweden using artificial neural network. CATENA 183.https://doi.org/10.1016/j.catena.2019.104225

  86. Shano L, Raghuvanshi TK, Meten M (2021) Landslide susceptibility mapping using frequency ratio model: the case of Gamo highland, South Ethiopia. Arab J Geosci 14.https://doi.org/10.1007/s12517-021-06995-7

  87. Sharma S, Mahajan AK (2018) Comparative evaluation of GIS-based landslide susceptibility mapping using statistical and heuristic approach for Dharamshala region of Kangra Valley, India. Geoenvironmental Disasters 5(4). https://doi.org/10.1186/s40677-018-0097-1

  88. Shen L, Li C (2010) Water body extraction from Landsat ETM+ imagery using adaboost algorithm. 2010 18th International Conference on Geoinformatics: 1–4. https://doi.org/10.1109/GEOINFORMATICS.2010.5567762

  89. Sifa SF, Mahmud T, Tarin MA, Haque DME (2019) Event-based landslide susceptibility mapping using weights of evidence (WoE) and modified frequency ratio (MFR) model: a case study of Rangamati district in Bangladesh. Geology, Ecology, and Landscapes. https://doi.org/10.1080/24749508.2019.1619222

    Article  Google Scholar 

  90. Silalahi FES, Pamela, Arifianti Y, Hidayat F (2019) Landslide susceptibility assessment using frequency ratio model in Bogor, West Java, Indonesia. Geosci Lett 6.https://doi.org/10.1186/s40562-019-0140-4

  91. Sujatha ER, Sridhar V (2021) Landslide susceptibility analysis: a logistic regression model case study in Coonoor, India. Hydrology 8(1). https://doi.org/10.3390/hydrology8010041

  92. Turrini MC, Visintainer P (1998) Proposal of a method to define areas of landslide hazard and application to an area of the Dolomites. Italy Engineering Geology 50(3–4):255–265. https://doi.org/10.1016/S0013-7952(98)00022-2

    Article  Google Scholar 

  93. United States Geological Survey (2004) Landslide types and processes. Fact Sheet 2004–3072. U.S. Department of the Interior.

  94. Wu Y, Li W, Liu P, Bai H, Wang Q, He J, Liu Y, Sun S (2016) Application of analytic hierarchy process model for landslide susceptibility mapping in the Gangu County, Gansu Province, China. Environmental Earth Sciences 75(422). https://doi.org/10.1007/s12665-015-5194-9

  95. Xie P, Wen H, Ma C, Baise LG, Zhang J (2018) Application and comparison of logistic regression model and neural network model in earthquake-induced landslides susceptibility mapping at mountainous region, China. Geomat Nat Haz Risk 9(1):501–523. https://doi.org/10.1080/19475705.2018.1451399

    Article  Google Scholar 

  96. Zha Y, Gao J, Ni S (2003) Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int J Remote Sens 24(3):583–594. https://doi.org/10.1080/01431160304987

    Article  Google Scholar 

  97. Zhang K, Thapa B, Ross M, Gann D (2016) Remote sensing of seasonal changes and disturbances in mangrove forest: a case study from South Florida. Ecosphere 7(6). https://doi.org/10.1002/ecs2.1366

  98. Zhang K, Wu X, Niu R, Yang K, Zhao L (2017) The assessment of landslide susceptibility mapping using random forest and decision tree methods in the Three Gorges Reservoir area, China. Environ Earth Sci 76.https://doi.org/10.1007/s12665-017-6731-5

Download references

Acknowledgements

The authors are grateful to the anonymous reviewers for their invaluable, detailed, and informative suggestions and comments on the different versions of this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. S. Ajin.

Ethics declarations

Ethics Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Thomas, A.V., Saha, S., Danumah, J.H. et al. Landslide Susceptibility Zonation of Idukki District Using GIS in the Aftermath of 2018 Kerala Floods and Landslides: a Comparison of AHP and Frequency Ratio Methods. J geovis spat anal 5, 21 (2021). https://doi.org/10.1007/s41651-021-00090-x

Download citation

Keywords

  • Analytical hierarchy process
  • Frequency ratio
  • GIS
  • Landslides
  • Western Ghats