Skip to main content
Log in

GPU-Accelerated Rendering Methods to Visually Analyze Large-Scale Disaster Simulation Data

  • Published:
Journal of Geovisualization and Spatial Analysis Aims and scope Submit manuscript

Abstract

Emerging methodologies for natural hazard risk assessments involve the execution of a multitude of different interacting simulation models that produce vast amounts of spatio-temporal datasets. This data pool is further enlarged when such simulation results are post-processed using GIS operations, for example to derive information for decision-making. The novel approach presented in this paper makes use of the GPU-accelerated rendering pipeline to perform such operations on-the-fly without storing any results on secondary memory and thus saving large amounts of storage space. Particularly, algorithms for three frequently used geospatial analysis methods are provided, namely for the computation of difference maps using map algebra and overlay operations, distance maps and buffers as examples for proximity analyses as well as kernel density estimation and inverse distance weighting as examples for statistical surfaces. In addition, a visualization tool is presented that integrates these methods using a node-based data flow architecture. The application of this visualization tool to the results of a real-world risk assessment methodology used in civil engineering shows that the memory footprint of post-processing datasets can be reduced at the order of terabytes. Although the technique has several limitations, most notably the reduced interoperability with conventional analysis tools, it can be beneficial for other use cases. When integrated into desktop GIS applications, for example, it can be used to quickly generate a preview of the results of complex analysis chains or it can reduce the amount of data to be transferred to web or mobile GIS applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. http://swai.ethz.ch/swaie/AnimatedInterpolation/AnimatedInterpolation.de.html (accessed April 18, 2017)

  2. https://github.com/pyalot/webgl-heatmap (accessed April 18, 2017)

  3. https://www.opengl.org/sdk/docs/man/html/smoothstep.xhtml (accessed April 26, 2017)

References

  • Adey BT et al. (2016) Ensuring acceptable levels of infrastructure related risks due to natural hazards with emphasis on conducting stress tests. In: Proceedings of the 1st International Symposium on Infrastructure Asset Management (SIAM), Kyoto, 2016

  • Akenine-Moller T, Haines E, Hoffman N (2008) Real-time rendering. A. K. Peters, Ltd., Wellesley

    Google Scholar 

  • Baker JW, Miller MK, Markhvida M (2015). Local measures of disruption for quantifying seismic risk and reliability of complex networks. In: 12th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP12, Vancouver, Canada, 2015. p 8

  • Christodoulou SE, Fragiadakis M (2015) Vulnerability assessment of water distribution networks considering performance data. J Infrastruct Syst 21:04014040. doi:10.1061/(ASCE)IS.1943-555X.0000224

    Article  Google Scholar 

  • Cova TJ (1999) GIS in emergency management. Geogr Inf Syst 2:845–858

    Google Scholar 

  • de Dios OJ, Willumsen LG (2011) Modelling transport. Wiley, Chichester, UK

    Google Scholar 

  • Grossi P, Kunreuther H, Windeler D (2005) An introduction to catastrophe models and insurance. In: Grossi P, Kunreuther H (eds) Catastrophe modeling: a new approach to managing risk. Springer, Boston, pp 23–42. doi:10.1007/0-387-23129-3_2

    Chapter  Google Scholar 

  • Hackl J, Adey BT, Heitzler M, Iosifescu-Enescu I (2015) An overarching risk assessment process to evaluate the risks associated with infrastructure networks due to natural hazards. Int J Performability Eng 11:153–168

    Google Scholar 

  • Heitzler M, Hackl J, Adey BT, Iosifescu-Enescu I, Lam JC, Hurni L (2016) A method to visualize the evolution of multiple interacting spatial systems ISPRS. J Photogramm Remote Sens 117:217–226. doi:10.1016/j.isprsjprs.2016.03.002

    Article  Google Scholar 

  • Henneböhl K, Appel M, Pebesma E (2011) Spatial interpolation in massively parallel computing environments. Paper presented at the 14th AGILE International Conference on Geographic Information Science, Utrecht, The Netherlands

  • Herrmann FJ (2010) Randomized sampling and sparsity: getting more information from fewer samples. Geophysics 75:WB173–WB187. doi:10.1190/1.3506147

    Article  Google Scholar 

  • Huang H, Li Y, Gartner G, Wang Y (2011) An SVG-based method to support spatial analysis in XML/GML/SVG-based WebGIS. Int J Geogr Inf Sci 25:1561–1574. doi:10.1080/13658816.2010.532133

    Article  Google Scholar 

  • Iverson J, Kamath C, Karypis G (2012) Fast and effective lossy compression algorithms for scientific datasets. Paper presented at the 18th international conference on Parallel Processing, Rhodes Island, Greece

  • Kellens W, Deckers P, Saleh H, Vanneuville W, De Maeyer P, Allaert G, De Sutter R (2008) A GIS tool for flood risk analysis in Flanders (Belgium). In: Brebbia C, Beriatos E (eds) Risk analysis VI: computer simulation and hazard mitigation, 2008. WIT Press, pp 21–27

  • Kirsch F, Döllner J (2004) Rendering techniques for hardware-accelerated image-based CSG. Journal of WSCG 12:221–228

    Google Scholar 

  • Krisp JM, Peters S, Murphy CE, Fan H (2009) Visual bandwidth selection for kernel density maps. Photogrammetrie - Fernerkundung - Geoinformation 2009:445–454. doi:10.1127/1432-8364/2009/0032

    Article  Google Scholar 

  • Krisp JM, Špatenková O (2010) Kernel density estimations for visual analysis of emergency response data. In: Konecny M, Zlatanova S, Bandrova LT (eds) Geographic information and cartography for risk and crisis management: towards better solutions. Springer, Berlin Heidelberg, pp 395–408. doi:10.1007/978-3-642-03442-8_27

    Chapter  Google Scholar 

  • Kull D, Feldman A (1998) Evolution of Clark’s unit graph method to spatially distributed runoff. J Hydrol Eng 3:9–19. doi:10.1061/(ASCE)1084-0699(1998)3:1(9)

    Article  Google Scholar 

  • Kunz M, Grêt-Regamey A, Hurni L (2011) Visualization of uncertainty in natural hazards assessments using an interactive cartographic information system. Nat Hazards 59:1735–1751. doi:10.1007/s11069-011-9864-y

    Article  Google Scholar 

  • Leskens JG, Kehl C, Tutenel T, Kol T, Haan G, Stelling G, Eisemann E (2015) An interactive simulation and visualization tool for flood analysis usable for practitioners. Mitig Adapt Strateg Glob Chang:1–18. doi:10.1007/s11027-015-9651-2

  • Lienert C, Bär HR, Hurni L (2013) GPU-accelerated spatial interpolation rendering for web-based environmental monitoring In: 26th International Cartographic Conference: From Pole to Pole Dresden, Germany, 2013

  • Lohr SL (2009) Sampling: design and analysis. Cengage Learning, Boston

    Google Scholar 

  • Losey S, Wehrli A (2013) Schutzwald in der Schweiz: Vom Projekt SilvaProtect-CH zum harmonisierten Schutzwald. Final Report. Bundesamt für Umwelt (BAFU), Bern

    Google Scholar 

  • Mei G (2014) Evaluating the power of GPU acceleration for IDW interpolation algorithm. Sci World J 2014:8. doi:10.1155/2014/171574

    Google Scholar 

  • Mendlik T, Gobiet A (2016) Selecting climate simulations for impact studies based on multivariate patterns of climate change. Clim Chang 135:381–393. doi:10.1007/s10584-015-1582-0

    Article  Google Scholar 

  • Pant R, Hall JW, Barr S, Alderson D (2014) Spatial risk analysis of interdependent infrastructures subjected to extreme hazards. In: Vulnerability, uncertainty, and risk. pp 677–686. doi:10.1061/9780784413609.069

  • Ribicic H, Waser J, Fuchs R, Blöschl G, Gröller E (2013) Visual analysis and steering of flooding simulations. IEEE Trans Vis Comput Graph 19:1062–1075. doi:10.1109/TVCG.2012.175

    Article  Google Scholar 

  • Rickenmann D (1999) Empirical relationships for debris flows. Nat Hazards 19:47–77. doi:10.1023/A:1008064220727

    Article  Google Scholar 

  • Rogerson P (2015) Statistical methods for geography: a student’s guide. SAGE Publications, London

    Google Scholar 

  • Silverman BW (1998) Density estimation for statistics and data analysis. Taylor & Francis, Boca Raton

    Google Scholar 

  • Storer JA (1988) Data compression: methods and theory. Computer Science Press, Inc

  • Szymkiewicz R (2010) Numerical modeling in open channel hydraulics. Water science & engineering papers, vol 83. Springer, Dordrecht

    Book  Google Scholar 

  • Thakali L, Kwon TJ, Fu L (2015) Identification of crash hotspots using kernel density estimation and kriging methods: a comparison. J Mod Transp 23:93–106. doi:10.1007/s40534-015-0068-0

    Article  Google Scholar 

  • Trapp M, Semmo A, Döllner J (2015) Interactive rendering and stylization of transportation networks using distance fields

  • Vaaraniemi M, Treib M, Westermann R (2011) High-quality cartographic roads on high-resolution DEMs. J WSCG 19:41–48

    Google Scholar 

  • van der Zwaag J, Zhang S, Moorhead R, Welch D, Dyer J (2015) Visualizing uncertainty of river model ensembles. Paper presented at the IS&T/SPIE Electronic Imaging Conference on Visualization and Data Analysis, San Francisco, California, United States

  • Voumard J, Caspar O, Derron MH, Jaboyedoff M (2013) Dynamic risk simulation to assess natural hazards risk along roads. Nat Hazards Earth Syst Sci 13:2763–2777. doi:10.5194/nhess-13-2763-2013

    Article  Google Scholar 

  • Waser J, Fuchs R, Ribicic H, Schindler B, Bloschl G, Groller E (2010) World lines. IEEE Trans Vis Comput Graph 16:1458–1467. doi:10.1109/tvcg.2010.223

    Article  Google Scholar 

  • Welch TA (1984) A technique for high-performance data compression. Computer 17:8–19. doi:10.1109/mc.1984.1659158

    Article  Google Scholar 

  • Wolff M, Asche H (2009) Geovisualization approaches for spatio-temporal crime scene analysis—towards 4D crime mapping. In: Geradts ZJMH, Franke KY, Veenman CJ (eds) Computational forensics: Third International Workshop, IWCF 2009, The Hague, The Netherlands, august 13–14, 2009. Proceedings. Springer, Berlin Heidelberg, pp 78–89. doi:10.1007/978-3-642-03521-0_8

    Chapter  Google Scholar 

  • Wüest M, Frei C, Altenhoff A, Hagen M, Litschi M, Schär C (2010) A gridded hourly precipitation dataset for Switzerland using rain-gauge analysis and radar-based disaggregation. Int J Climatol 30:1764–1775

    Google Scholar 

  • Xia J, Dong P, Tang J (2016a) Efficient rendering of natural hazards data in mobile GIS. GEOMAT NAT HAZ RISK 7:1726–1730. doi:10.1080/19475705.2015.1084954

  • Xia W et al (2016b) A comprehensive study of the past, present, and future of data deduplication. Proc IEEE 104:1681–1710. doi:10.1109/JPROC.2016.2571298

    Article  Google Scholar 

  • Zhang J, You S (2012) CudaGIS: report on the design and realization of a massive data parallel GIS on GPUs. Paper presented at the Third ACM SIGSPATIAL International Workshop on GeoStreaming, Redondo Beach, California

  • Zhang J, You S, Gruenwald L (2015) Large-scale spatial data processing on GPUs and GPU-accelerated clusters. SIGSPATIAL Spec 6:27–34. doi:10.1145/2766196.2766201

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magnus Heitzler.

Ethics declarations

To the best knowledge of the corresponding author, the submitted manuscript complies with the ethical standards of the journal.

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Funding

This work was supported by the European Union’s Seventh Programme for research, technological development and demonstration under Grant 603960.

Ethical Approval

No human or animal tests were conducted.

Informed Consent

As there were no user studies conducted in this research, no informed consent had to be obtained.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heitzler, M., Lam, J.C., Hackl, J. et al. GPU-Accelerated Rendering Methods to Visually Analyze Large-Scale Disaster Simulation Data. J geovis spat anal 1, 3 (2017). https://doi.org/10.1007/s41651-017-0004-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s41651-017-0004-4

Keywords

Navigation