Advertisement

Hybrid Precoding Design Achieving Fully Digital Performance for Millimeter Wave Communications

  • Yang LuEmail author
  • Wei Zhang
Research paper
  • 39 Downloads

Abstract

As a promising candidate for millimeter wave (mmWave) multiple-input and multiple-output (MIMO) communications, hybrid precoding techniques can reap the benefit of large antenna arrays, yet with only limited number of radio frequency (RF) chains. In this paper, we investigate the problem of achieving the same performance of the fully digital system with hybrid precoding. Specifically, for the single user MIMO system, we propose a closed form hybrid precoding design that can achieve the optimal fully digital performance for both frequency-flat and frequency-selective channels, and only requires the number of RF chains to equal the number of paths of the channel. The design for the case with even less RF chains is also given. Furthermore, for the multiuser (MU) system with single antenna at each mobile terminal (MT), two MU beamforming schemes are considered, which are the directional beamforming and zero-forcing. We show that for both schemes, the fully digital performance can be achieved with our proposed hybrid precoding designs with the number of RF chains no less than the sum number of channel paths from the base station to all the selected MTs. Numerical results are provided to validate our analytical results and show the performance gain of the proposed hybrid precoding designs compared to other benchmark schemes.

Keywords

millimeter wave hybrid precoding RF chains beamforming 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. H. Li, F. Huang, R. Y. Zhou, et al. MmWave mobile communication under hypercellular architecture [J]. Journal of Communications and Information Networks, 2016, 1(2): 62–76.CrossRefGoogle Scholar
  2. [2]
    L. Yang, Y. Zeng, R. Zhang. Efficient channel estimation for millimeter wave MIMO with limited RF chains [C]//Proceedings of IEEE International Conference on Communications (ICC 2016), Kuala Lumpur, Malaysia, 2016: 23–27.Google Scholar
  3. [3]
    X. Zhang, F. Molisch, S. Kung. Variable-phase-shift-based RFbaseband codesign forMIMO antenna selection [J]. IEEE Transactions on Signal Processing, 2005, 53(11): 4091–4103.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    L. Yang, Y. Zeng, R. Zhang. Hybrid beamforming for wireless energy transfer: How many RF chains do we need [J]. IEEE Transactions on Wireless Communications, 2018, 17(10): 6972–6984.CrossRefGoogle Scholar
  5. [5]
    A. Alkhateeb, O. Ayach, G. Leus, et al. Channel estimation and hybrid precoding for millimeter wave cellular systems [J]. IEEE Journal of Selected Topics in Signal Processing, 2014, 8(5): 831–845.CrossRefGoogle Scholar
  6. [6]
    Z. Xiao, P. Xia, X. G. Xia. Codebook design for millimeter-wave channel estimation with hybrid precoding structure [J]. IEEE Transactions on Wireless Communications, 2017, 16(1): 141–153.MathSciNetCrossRefGoogle Scholar
  7. [7]
    L. Zhao, D. W. K. Ng, J. Yuan. Multi-user precoding and channel estimation for hybrid millimeter wave systems [J]. IEEE Journal on Selected Areas in Communications, 2017, 35(7): 1576–1590.CrossRefGoogle Scholar
  8. [8]
    O. Ayach, S. Rajagopal, S. Abu-Surra, et al. Spatially sparse precoding in millimeter wave MIMO systems [J]. IEEE Transactions on Wireless Communications, 2014, 13(3): 1499–1513.CrossRefGoogle Scholar
  9. [9]
    A. Morsali, A. Haghighat, B. Champagne. Realizing fully digital precoders in hybrid A/D architecture with minimum number of RF chains [J]. IEEE Communications Letters, 2017.Google Scholar
  10. [10]
    F. Sohrabi, W. Yu. Hybrid digital and analog beamforming design for large-scale antenna arrays [J]. IEEE Journal of Selected Topics in Signal Processing, 2016, 10(3): 503–513.CrossRefGoogle Scholar
  11. [11]
    G. Zhu, K. Huang, V. K. N. Lau, et al. Hybrid beamforming via the kronecker decomposition for the millimeter-wave massive MIMO systems [J]. IEEE Journal on Selected Areas in Communications, 2017, 35(9): 2097–2114.CrossRefGoogle Scholar
  12. [12]
    J. Jin, Y. Zheng, W. Chen, et al. Hybrid precoding for millimeter wave MIMO systems: A matrix factorization approach [J]. IEEE Transactions on Wireless Communications, 2018, 17(5): 3327–3339.CrossRefGoogle Scholar
  13. [13]
    Q. Yu, C. Han, L. Bai, et al. Low-complexity multiuser detection in millimeter wave system based on opportunistic hybrid beamforming [J]. IEEE Transactions on Vehicular Technology, 2018.Google Scholar
  14. [14]
    V. Raghavan, S. Subramanian, J. Cezanne, et al. Single-user versus multi-user precoding fo millimeter waveMIMO system [J]. IEEE Journal of Selected Areas in Communications, 2017, 35(6): 1387–1401.CrossRefGoogle Scholar
  15. [15]
    M. Dai, B. Clerckx. Multiuser millimeter wave beamforming strategies with quantized and statistical CSIT [J]. IEEE Transactions on Wireless Communications, 2017, 16(11): 7025–7038.CrossRefGoogle Scholar
  16. [16]
    S. He, J. Wang, Y. Huang, et al. Codebook-based hybrid precoding for millimeter wave multiuser systems [J]. IEEE Transactions on Signal Processing, 2017, 65(20): 5289–5304.MathSciNetCrossRefGoogle Scholar
  17. [17]
    A. Alkhateeb, G. Leus, R. Heath Jr. Limited feedback hybrid precoding for multi-user millimeter wave system [J]. IEEE Transactions on Wireless Communications, 2015, 14(11): 6481–6494.CrossRefGoogle Scholar
  18. [18]
    X. Yu, J. Shen, J. Zhang, et al. Alternating minimization algorithms for hybrid precoding in millimeter wave MIMO system [J]. IEEE Journal of Selected Topics in Signal Processing, 2016, 10(3): 485–500.CrossRefGoogle Scholar
  19. [19]
    J. Du, W. Xu, H. Shen, et al. Hybrid precoding architecture for massive multiuser MIMO with dissipation: Subconnected or fully connected structures [J]. IEEE Transactions on Wireless Communications, 2018, 17(8): 5465–5479.CrossRefGoogle Scholar
  20. [20]
    K. Venugopal, A. Alkhateeb, N. G. Prelcic, et al. Channel estimation for hybrid architecture-based wideband millimeter wave system [J]. IEEE Transactions on Communications, 2016, 64(5): 1801–1818.CrossRefGoogle Scholar
  21. [21]
    Z. Zhou, J. Fang, L. Yang, et al. Low-rank tensor decompositionaided channel estimation for millimeter wave MIMO-OFDM systems [J]. IEEE Journal of Selected Areas in Communications, 2017, 35(7): 1524–1538.CrossRefGoogle Scholar
  22. [22]
    A. Alkhateeb, R. Heath, Jr. Frequency selective hybrid precoding for limited feedback millimeter wave systems [J]. IEEE Transactions on Communications, 2016, 64(5): 1801–1818.CrossRefGoogle Scholar
  23. [23]
    S. Park, A. Alkhateeb, R. W. Heath, Jr. Dynamic subarrays for hybrid precoding in wideband mmWave MIMO systems [J]. IEEE Transactions on Wireless Communications, 2017, 16(5): 2907–2920.CrossRefGoogle Scholar
  24. [24]
    F. Sohrabi, W. Yu. Hybrid analog and digital beamforming for mmWave OFDM large-scale antenna arrays [J]. IEEE Journal of Selected Areas in Communications, 2017, 35(7): 1432–1443.CrossRefGoogle Scholar
  25. [25]
    T. Bogale, L. Le, A. Haghighat, et al. On the number of RF chains and phase shifters, and scheduling design with hybrid analog-digital beamforming [J]. IEEE Transactions on Wireless Communications, 2016, 15(5): 3311–3326.CrossRefGoogle Scholar
  26. [26]
    Y. Zhu, Q. Zhang, T. Yang. Low-complexity hybrid precoding with dynamic beam assignment in mmWave OFDM systems [J]. IEEE Transactions on Vehicular Technology, 2018, 67(4): 3685–3689.CrossRefGoogle Scholar
  27. [27]
    M. Akdeniz, Y. Liu, M. Samimi, et al. Millimeter wave channel modeling and cellular capacity evaluation [J]. IEEE Journal of Selected Areas in Communications, 2014, 32(6): 1194–1206.CrossRefGoogle Scholar
  28. [28]
    A. M. Sayeed, V. Raghavan. Maximizing MIMO capacity in sparse multipath with reconfigurable antenna arrays [J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(1): 156–166.CrossRefGoogle Scholar
  29. [29]
    B. Yang, K. B. Letaief, R. Cheng, et al. Channel estimation for OFDM transmission in multipath fading channels based on parametric channel modeling [J]. IEEE Transactions on Communications, 2001, 49(3): 467–478.CrossRefzbMATHGoogle Scholar
  30. [30]
    X. Yu, J. Zhang, M. Haenggi, et al. Coverage analysis for millimeter wave networks: The impact of directional antenna arrays [J]. IEEE Journal of Selected Areas in Communications, 2017, 35(7): 1498–1512.CrossRefGoogle Scholar
  31. [31]
    Y. Zeng, L. Yang, R. Zhang. Multi-user millimeter wave MIMO with single-sided full dimensional lens antenna array [C]//Proceedings of IEEE International Conference on Communications (ICC 2017), Paris, France, 2017: 21–25.Google Scholar
  32. [32]
    Y. Zeng, L. Yang, R. Zhang. Multi-user millimeter wave MIMO with full dimensional lens antenna array [J]. IEEE Transactions on Wireless Communications, 2018, 17(4): 2800–2814.CrossRefGoogle Scholar
  33. [33]
    C. Balanis. Antenna Theory [M]. Wiley, 1997.Google Scholar
  34. [34]
    L. Kong, S. Han, C. Yang. Wideband hybrid precoder for massive MIMO systems [C]//Proceedings of IEEE Global Conference on Signal and Information Processing (GlobalSIP), Orlando, FL, USA, 2017: 305–309.Google Scholar
  35. [35]
    M. Xiao, S. Mumtaz, Y. M. Huang, et al. Millimeter wave communications for future mobile networks [J]. IEEE Journal of Selected Areas in Communications, 2017, 35(9): 1909–1932.CrossRefGoogle Scholar
  36. [36]
    P. Amadori, C. Masouros. Low RF-complexity millimeter-wave beamspace-MIMO systems by beam selection [J]. IEEE Transactions on Communications, 2015, 63(6): 2212–2222.CrossRefGoogle Scholar
  37. [37]
    L. Yang, Y. Zeng, R. Zhang. Channel estimation for millimeter wave MIMO communications with lens antenna arrays [J]. IEEE Transactions on Vehicular Technology, 2018, 67(4): 3239–3251.CrossRefGoogle Scholar
  38. [38]
    L. Yang, W. Zhang, N. Zheng, et al. Opportunistic user scheduling in MIMO cognitive radio networks [C]//Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2014), Florence, Italy, 2014: 7303–7307.CrossRefGoogle Scholar
  39. [39]
    L. Yang, W. Zhang. Interference Coordination for 5G Cellular Networks [M]. Springer, 2015. ISBN 978-3-319-24723-6.CrossRefGoogle Scholar

Copyright information

© Posts & Telecom Press and Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.The School of Electrical Engineering and TelecommunicationsThe University of New South WalesSouth WalesAustralia

Personalised recommendations