Time-Modulated Arrays: A Four-Dimensional Antenna Array Controlled by Switches

Review paper
  • 23 Downloads

Abstract

With the rapid development of modern electronic technologies, antenna arrays typically operate in very complex electromagnetic environments. However, owing to the various errors such as systematic errors and random errors, conventional antenna arrays have relatively high sidelobes. Time modulated arrays (TMAs), also known as four-dimensional (4-D) antenna arrays, introduce time as an additional dimension for generating ultra-low sidelobes at fundamental component and realizing real-time beam scanning by harmonic components. Recently, the harmonic components can also be developed for various new applications including wireless communications and radar systems. In this review, we introduce comprehensively the fundamental methodologies and recent applications of TMAs. This aims to stimulate continuing efforts for the understanding of TMAs and explore their applications in various aspects. The methods mentioned in this review include three aspects: sideband radiation suppression, power efficiency of TMAs, and applications of harmonic components. These methods either improve the existing TMAs or promote the practical applications of TMAs. First, to suppress the sideband radiation, a method using non-uniform periodical modulation is introduced. The proposed method has an advantage of low computation and can be easily used for synthesizing a real-time radiation pattern according to the environmental need. Next, a TMA structure using reconfigurable power dividers/combiner is introduced to improve the power efficiency of feeding network. Finally, three applications of harmonic component including direction finding, calibration method, and space division multiple access are separately introduced to illustrate the development potential of TMAs.

Keywords

TMAs sideband radiation suppression reconfigurable power dividers/combiner direction finding calibration method space division multiple access 

References

  1. [1]
    P. J. Bevelacqua, C. A. Balanis. Minimum sidelobe levels for lineararrays [J]. IEEE Trans. Antennas Propag, 2007, 55(12): 3442–3449.CrossRefGoogle Scholar
  2. [2]
    G. Cardone, G. Cincotti, M. Pappalardo. Design of wide-bandarrays for low sidelobe level beam patterns by simulated annealing [J]. IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control, 2002, 49(8): 1050–1059.CrossRefGoogle Scholar
  3. [3]
    N. H. Farhat, B. Bai. Phased-array antenna pattern synthesis bysimulated annealing [J]. Proceedings of the IEEE, 1987, 75(6): 842–844.CrossRefGoogle Scholar
  4. [4]
    V. Murino, A. Trucco, C. S. Regazzoni. Synthesis of unequaly spaced arrays by simulated annealing [J]. IEEE Transactions on Signal Processing, 1996, 44(1): 119–122.CrossRefGoogle Scholar
  5. [5]
    R. L. Haupt. Thinned arrays using genetic algorithms [J]. IEEE Trans. Antennas Propag, 1994, 42(7): 991–993.CrossRefGoogle Scholar
  6. [6]
    F. J. Ares, J. A. Rodriguez, E. Villanueva, et al. Genetic algorithm in the design and optimization of antenna arraypatterns [J]. IEEE Trans. Antennas Propag., 1999, 47(3): 506–510.CrossRefGoogle Scholar
  7. [7]
    H. M. Elkamchouchi, M. M. Hassan. Array pattern synthesis approach using a genetic algorithm [J]. IET Microwaves, Antennas & Propagation, 2014, 8(14): 1236–1240.CrossRefGoogle Scholar
  8. [8]
    T. H. Ismail, Z. M. Hamici. Array pattern synthesis using digitalphase control quantized particle swarm optimization [J]. IEEE Trans. Antennas Propag., 2010, 58(6): 2142–2145.CrossRefGoogle Scholar
  9. [9]
    G. Oliveri, A. Massa. Bayesian compressive sampling for patternsynthesis with maximally sparse non-uniform linear arrays [J]. IEEE Trans. Antennas Propag., 2011, 59(2): 467–481.CrossRefMATHGoogle Scholar
  10. [10]
    H. E. Shanks, R. W. Bickmore. Four-dimensional electromagneticradiators [J]. Canadian Journal of Physics, 1959, 37(3): 263–275.CrossRefMATHGoogle Scholar
  11. [11]
    H. E. Shanks. A new technique for electronic scanning [J]. IEEE Trans. Antennas Propag., 1961, 9(2): 162–166.CrossRefGoogle Scholar
  12. [12]
    W. H. Kummer, A. T. Villeneuve, T. S. Fong, et al. Ultra-low sidelobes from time-modulated arrays [J]. IEEE Trans. Antennas Propag., 1963, 11(6): 633–639.CrossRefGoogle Scholar
  13. [13]
    S. W. Yang, Z. P. Nie. A review of the four dimension antennaarrays [J]. Journal of Electronic Science and Technology of China, 2006, 4(3): 193–201.Google Scholar
  14. [14]
    W. Q. Wang, H. C. So, A. Farina. An overview on time/frequency modulated array processing [J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(2): 228–246.CrossRefGoogle Scholar
  15. [15]
    S. Yang, Y. B. Gan, A. Qing. Sideband suppression in time modulated linear arrays by the differential evolution algorithm [J]. IEEE Antennas Wireless Propag. Lett., 2002, 1(1): 173–175.CrossRefGoogle Scholar
  16. [16]
    J. C. Bregains, J. Fondevila-Gomez, G. Franceschetti, et al. Signal radiation and power losses of time-modulated arrays [J]. IEEE Transactions on Antennas & Propagation, 2008, 56(6): 1799–1804.CrossRefGoogle Scholar
  17. [17]
    J. Fondevila, J. C. Bregains, F. Ares, et al. Optimizing uniformly excited linear arrays through time modulation [J]. IEEE Antennas & Wireless Propagation Letters, 2004, 3(1): 298–301.CrossRefGoogle Scholar
  18. [18]
    L. Poli, P. Rocca, L. Manican, et al. Handling sideband radiations in time-modulated arrays through particle swarm optimization [J]. IEEE Transactions on Antennas & Propagation, 2010, 58(4): 1408–1411.CrossRefGoogle Scholar
  19. [19]
    S. Pal, S. Das, A. Basak. Design of time-modulated linear arrays with a multi-objective optimization approach [J]. Progress in Electromagnetics Research B, 2010, 23(23): 83–107.CrossRefGoogle Scholar
  20. [20]
    J. Yang, W. T. Li, X. W. Shi, et al. A hybrid ABC-DE algorithm and its application for time-modulated arrays pattern synthesis [J]. IEEE Transactions on Antennas & Propagation, 2013, 61(11): 5485–5495.CrossRefGoogle Scholar
  21. [21]
    S. Yang, Y. B. Gan, A. Qing. Design of a uniform amplitude timemodulated linear array with optimized time sequences [J]. IEEE Transactions on Antennas & Propagation, 2005, 53(7): 2337–2339.CrossRefGoogle Scholar
  22. [22]
    L. Poli, P. Rocca, L. Manica, et al. Pattern synthesis in time modulated linear arrays through pulse shifting [J]. IET Microwaves, Antennas & Propagation, 2010, 4(9): 1157–1164.CrossRefGoogle Scholar
  23. [23]
    Q. Zhu, S. Yang, L. Zheng, et al. Design of a low sidelobe time modulated linear array with uniform amplitude and sub-sectional optimized time steps [J]. IEEE Transactions on Antennas & Propagation, 2012, 60(9): 4436–4439.MathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    E. T. Bekele, L. Poli, P. Rocca, et al. Pulse-shaping strategy for time modulated arrays-analysis and design [J]. IEEE Transactions on Antennas & Propagation, 2013, 61(7): 3525–3537.MathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    C. He, H. Yu, X. Liang, et al. Sideband radiation level suppression in time-modulated array by nonuniform period modulation [J]. IEEE Antennas & Wireless Propagation Letters, 2015, 14: 606–609.CrossRefGoogle Scholar
  26. [26]
    Y. Z. Tong. Time modulated linear arrays [D]. University of Sheffield, 2013: 1–4.Google Scholar
  27. [27]
    A. Tennant, B. Chambers. A two-element time-modulated array with direction finding properties [J]. IEEE Antennas & Wireless Propagation Letters, 2007, 6(11): 64–65.CrossRefGoogle Scholar
  28. [28]
    A. Tennant. Experimental two-element time-modulated direction fnding arrays [J]. IEEE Transactions on Antennas & Propagation, 2010, 58(3): 986–988.MathSciNetCrossRefGoogle Scholar
  29. [29]
    A. Tennant, B. Chambers. Direction finding using a four-element time-switched array system [C]//Antennas & Propagation Conference, Loughborough, 2008: 3.Google Scholar
  30. [30]
    G. Li, S. Yang, Z. Nie. Direction of arrival estimation in time modulated linear arrays with unidirectional phase center motion [J]. IEEE Transactions on Antennas & Propagation, 2010, 58(4): 1105–1111.CrossRefGoogle Scholar
  31. [31]
    A. O’Donnell, W. Clark, J. Ernst, et al. Analysis of modulated signals for direction finding using time modulated arrays [C]//Radar Conference, Philadelphia, 2016: 1–5.Google Scholar
  32. [32]
    G. Li, S. Yang, Y. Chen, et al. A novel beam scanning technique in time modulated linear arrays [C]//IEEE Antennas & Propagation Society International Symposium, North Charleston, 2009: 1–4.Google Scholar
  33. [33]
    Y. Tong, A. Tennant. Simultaneous control of sidelobe level and harmonic beam steering in time-modulated linear arrays [J]. Electronics Letters, 2010, 46(3): 201–202.CrossRefGoogle Scholar
  34. [34]
    G. Li, S. Yang, Y. Chen, et al. An adaptive beamforming in time modulated antenna arrays [C]//International Symposium on Antennas, Kunming, 2008: 221–224.Google Scholar
  35. [35]
    L. Poli, P. Rocca, G. Oliveri, et al. Harmonic beamforming in timemodulated linear array [J]. IEEE Transactions on Antennas & Propagation, 2011, 59(7): 2538–2545.CrossRefGoogle Scholar
  36. [36]
    Q. Zhu, S. Yang, P. Rocca, et al. Signal-to-noise ratio and timemodulated signal spectrum in four-dimensional antenna arrays [J]. IET Microwaves, Antennas & Propagation, 2014, 9(3): 264–270.CrossRefGoogle Scholar
  37. [37]
    D. Masotti, A. Costanzo, M. D. Prete, et al. Time-modulation of linear arrays for real-time reconfigurable wireless power transmission [J]. IEEE Transactions on Microwave Theory & Techniques, 2016, 64(2): 331–342.Google Scholar
  38. [38]
    A. M. Yao, W. Wu, D. G. Fang. Single-sideband time-modulated phased array [J]. IEEE Transactions on Antennas & Propagation, 2015, 63(5): 1957–1968.MathSciNetCrossRefMATHGoogle Scholar
  39. [39]
    P. Rocca, Q. Zhu, E. T. Bekele, et al. 4-D arrays as enabling technology for cognitive radio systems [J]. IEEE Transactions on Antennas & Propagation, 2014, 62(3): 1102–1116.CrossRefGoogle Scholar
  40. [40]
    C. He, X. Liang, Z. Li, et al. Direction finding by time-modulated array with harmonic characteristic analysis [J]. IEEE Antennas & Wireless Propagation Letters, 2015, 14: 642–645.CrossRefGoogle Scholar
  41. [41]
    C. He, X. Liang, B. Zhou, et al. Space-division multiple access based on time-modulated array [J]. IEEE Antennas & Wireless Propagation Letters, 2015, 14: 610–613.CrossRefGoogle Scholar
  42. [42]
    C. He, X. Liang, J. Geng, et al. Parallel calibration method for phased array with harmonic characteristic analysis [J]. IEEE Transactions on Antennas & Propagation, 2014, 62(10): 5029–5036.CrossRefMATHGoogle Scholar
  43. [43]
    J. Chen, X. Liang, C. He, et al. High-sensitivity OAM phase gradient detection based on time-modulated harmonic characteristic analysis [J]. Electronics Letters, 2017, 53(12): 812–814.CrossRefGoogle Scholar
  44. [44]
    Y. Tong, A. Tennant. A two-channel time-modulated linear array with adaptive beamforming [J]. IEEE Transactions on Antennas & Propa gation, 2012, 60(1): 141–147.CrossRefGoogle Scholar
  45. [45]
    G. Bogdan, Y. Yashchyshyn, M. Jarzynka. Time-modulated antenna array with lossless switching network [J]. IEEE Antennas & Wireless Propagation Letters, 2016, 15: 1827–1830.CrossRefGoogle Scholar
  46. [46]
    J. Chen, X. Liang, C. He, et al. Efficiency improvement of time modulated array with reconfigurable power divider/combiner [J]. IEEE Transactions on Antennas & Propagation, 2017, 65(8): 4027–4037.CrossRefGoogle Scholar
  47. [47]
    Q. Zhu, S. Yang, R. Yao, et al. Direction finding using multiple sum and difference patterns in 4D antenna arrays [J]. International Journal of Antennas & Propagation, 2014, 2014 (2): 1–12.CrossRefGoogle Scholar
  48. [48]
    A. O’Donnell, W. Clark, J. Ernst, et al. Analysis of modulated signals for direction finding using time modulated arrays [C]//IEEE Radar Conference, Philadelphia, 2016: 1–5.Google Scholar

Copyright information

© Posts & Telecom Press and Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Chong He
    • 1
  • Lele Wang
    • 1
  • Jingfeng Chen
    • 1
  • Ronghong Jin
    • 1
  1. 1.Department of Electronic EngineeringShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations