Advertisement

A Review of Wideband Wide-Angle Scanning 2-D Phased Array and Its Applications in Satellite Communication

  • Yan Li
  • Shaoqiu Xiao
  • Jiajia Guo
Review paper
  • 130 Downloads

Abstract

In this review, research progress on the wideband wide-angle scanning two-dimensional phased arrays is summarized. The importance of the wideband and the wide-angle scanning characteristics for satellite communication is discussed. Issues like grating lobe avoidance, active reflection coefficient suppression and gain fluctuation reduction are emphasized in this review. Besides, techniques to address these issues and methods to realize the wideband wide-angle scanning phased array are reviewed.

Keywords

wideband wide-angle scanning two-dimensional phased array satellite communication 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Y. Rahmat-Samii, A. C. Densmore. Technology trends and challenges of antennas for satellite communication systems [J]. IEEE Transactions on Antennas and Propagation, 2015, 63(4): 1191–1204.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    S. K. Rao. Advanced antenna technologies for satellite communications payloads [J]. IEEE Transactions on Antennas and Propagation, 2015, 63(4): 1205–1217.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    R. J. Mailloux. Phased array antenna handbook [M]. Boston: Artech House, 2005.Google Scholar
  4. [4]
    R. Wang, B. Z. Wang, X. Ding, et al. Planar phased array with wideangle scanning performance based on image theory [J]. IEEE Transactions on Antennas and Propagation, 2015, 63(9): 3908–3917.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    M. Li, S. Q. Xiao, B. Z. Wang. Investigation of using high impedance surfaces for wide-angle scanning arrays [J]. IEEE Transactions on Antennas and Propagation, 2015, 63(7): 2895–2901.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    Y. Q. Wen, B. Z. Wang, X. Ding. Wide-beam SIW-slot antenna for wide-angle scanning phased array [J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15: 1638–1641.CrossRefGoogle Scholar
  7. [7]
    Y. Y. Bai, S. Xiao, M. C. Tang, et al. Wide-angle scanning phased array with pattern reconfigurable elements [J]. IEEE Transactions on Antennas and Propagation, 2011, 59(11): 4071–4076.CrossRefGoogle Scholar
  8. [8]
    S. Xiao, C. Zheng, M. Li, et al. Varactor-loaded pattern reconfigurable array for wide-angle scanning with low gain fluctuation [J]. IEEE Transactions on Antennas and Propagation, 2015, 63(5): 2364–2369.CrossRefGoogle Scholar
  9. [9]
    X. Ding, Y. F. Cheng, W. Shao, et al. A wide-angle scanning phased array with microstrip patch mode reconfiguration technique [J]. IEEE Transactions on Antennas and Propagation, 2017, 65(9): 4548–4555.CrossRefGoogle Scholar
  10. [10]
    Y. F. Cheng, X. Ding, W. Shao, et al. A novel wide-angle scanning phased array based on dual-mode pattern-reconfigurable elements [J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 396–399.CrossRefGoogle Scholar
  11. [11]
    Y. F. Cheng, X. Ding, W. Shao, et al. Planar wide-angle scanning phased array with pattern-reconfigurable windmill-shaped loop elements [J]. IEEE Transactions on Antennas and Propagation, 2017, 65(2): 932–936.CrossRefGoogle Scholar
  12. [12]
    X. Ding, Y. F. Cheng, W. Shao, et al. A wide-angle scanning planar phased array with pattern reconfigurable magnetic current element [J]. IEEE Transactions on Antennas and Propagation, 2017, 65(3): 1434–1439.MathSciNetCrossRefGoogle Scholar
  13. [13]
    P. J. Gibson. The Vivaldi aerial [C]//9th European Microwave Conference, Brighton, 1979: 101–105.Google Scholar
  14. [14]
    T. H. Chio, D. H. Schaubert. Parameter study and design of wide-band widescan dual-polarized tapered slot antenna arrays [J]. IEEE Transactions on Antennas and Propagation, 2000, 48(6): 879–886.CrossRefGoogle Scholar
  15. [15]
    Y. Yao, M. Liu, W. Chen, et al. Analysis and design of wideband widescan planar tapered slot antenna array [J]. IET Microwaves, Antennas & Propagation, 2010, 4(10): 1632–1638.CrossRefGoogle Scholar
  16. [16]
    H. Schrank, P. D. Patel. Approximate location of scan-blindness angle in printed phased arrays [J]. IEEE Antennas and Propagation Magazine, 1992, 34(5): 53–54CrossRefGoogle Scholar
  17. [17]
    H. Holter, T. H. Chio, D. H. Schaubert. Elimination of impedance anomalies in single-and dual-polarized endfire tapered slot phased arrays [J]. IEEE Transactions on Antennas and Propagation, 2000, 48(1): 122–124.CrossRefGoogle Scholar
  18. [18]
    D. H. Schaubert. A class of E-plane scan blindnesses in singlepolarized arrays of tapered-slot antennas with a ground plane [J]. IEEE Transactions on Antennas and Propagation, 1996, 44(7): 954–959.CrossRefGoogle Scholar
  19. [19]
    L. Zhang, J. A. Castaneda, N. G. Alexopoulos. Scan blindness free phased array design using PBG materials [J]. IEEE Transactions on Antennas and Propagation, 2004, 52(8): 2000–2007.CrossRefGoogle Scholar
  20. [20]
    G. Donzelli, F. Capolino, S. Boscolo, et al. Elimination of scan blindness in phased array antennas using a grounded-dielectric EBG material [J]. IEEE Antennas and Wireless Propagation Letters, 2007, 6: 106–109.CrossRefGoogle Scholar
  21. [21]
    A. Ellgardt. A scan blindness model for single-polarized tapered-slot arrays in triangular grids [J]. IEEE Transactions on Antennas and Propagation, 2008, 56(9): 2937–2942.CrossRefGoogle Scholar
  22. [22]
    Z. Xu, C. Zhang, T. Kaufmann, et al. Analysis of scan blindness in a linearly polarized tapered-slot phased array in triangular lattice performance improvement with parasitic notches [J]. IEEE Transactions on Antennas and Propagation, 2014, 62(8): 4057–4066.CrossRefzbMATHGoogle Scholar
  23. [23]
    A. Ellgardt, A. Wikstrom. A single polarized triangular grid taperedslot array antenna [J]. IEEE Transactions on Antennas and Propagation, 2009, 57(9): 2599–2607.CrossRefGoogle Scholar
  24. [24]
    R.W. Kindt. Prototype design of a modular ultrawideband wavelengthscaled array of flared notches [J]. IEEE Transactions on Antennas and Propagation, 2012, 60(3): 1320–1328.CrossRefGoogle Scholar
  25. [25]
    H. Holter. Dual-polarized broadband array antenna with BORelements, mechanical design and measurements [J]. IEEE Transactions on Antennas and Propagation, 2007, 55(2): 305–312.CrossRefGoogle Scholar
  26. [26]
    P. Hannan, D. Lerner, G. Knittel. Impedance matching a phased-array antenna over wide scan angles by connecting circuits [J]. IEEE Transactions on Antennas and Propagation, 1965, 13(1): 28–34.CrossRefGoogle Scholar
  27. [27]
    R. L. Xia, S. W. Qu, P. F. Li, et al. An efficient decoupling feeding network for microstrip antenna array [J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14: 871–874.CrossRefGoogle Scholar
  28. [28]
    B. A. Arand, A. Bazrkar, A. Zahedi. Design of a phased array in triangular grid with an efficient matching network and reduced mutual coupling for wide-angle scanning [J]. IEEE Transactions on Antennas and Propagation, 2017, 65(6): 2983–2991.MathSciNetCrossRefGoogle Scholar
  29. [29]
    F. Yang, Y. Rahmat-Samii. Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications [J]. IEEE Transactions on Antennas and Propagation, 2003, 51(10): 2936–2946.CrossRefGoogle Scholar
  30. [30]
    S. Xiao, M. C. Tang, Y. Y. Bai, et al. Mutual coupling suppression in microstrip array using defected ground structure [J]. IET Microwaves, Antennas & Propagation, 2011, 5(12): 1488–1494.CrossRefGoogle Scholar
  31. [31]
    M. C. Tang, Z. Chen, H. Wang, et al. Mutual coupling reduction using meta-structures for wideband, dual-polarized, and high-density patch arrays [J]. IEEE Transactions on Antennas and Propagation, 2017, 65(8): 3986–3998.CrossRefGoogle Scholar
  32. [32]
    K. L. Wu, C. Wei, X. Mei, et al. Array-antenna decoupling surface [J]. IEEE Transactions on Antennas and Propagation, 2017, 65(12): 6728–6738.CrossRefGoogle Scholar
  33. [33]
    H. Wheeler. Simple relations derived from a phased-array antenna made of an infinite current sheet [J]. IEEE Transactions on Antennas and Propagation, 1965, 13(4): 506–514.CrossRefGoogle Scholar
  34. [34]
    B. A. Munk, J. Pryor. Highlights of FSS and array research at the Ohio State University ElectroScience laboratory [C]//IEEE Antennas and Propagation Society International Symposium, Columbus, 2003, 4: 586–589.Google Scholar
  35. [35]
    E. A. Alwan, K. Sertel, J. L. Volakis. A simple equivalent circuit model for ultrawideband coupled arrays [J]. IEEE Antennas and Wireless Propagation Letters, 2012, 11: 117–120.CrossRefGoogle Scholar
  36. [36]
    D. Cavallo, A. Neto, G. Gerini. Analytical description and design of printed dipole arrays for wideband wide-scan applications [J]. IEEE Transactions on Antennas and Propagation, 2012, 60(12): 6027–6031.CrossRefGoogle Scholar
  37. [37]
    B. Riviere, H. Jeuland, S. Bolioli. New equivalent circuit model for a broadband optimization of dipole arrays [J]. IEEE Antennas and Wireless Propagation Letters, 2014, 13: 1300–1304.CrossRefGoogle Scholar
  38. [38]
    D. Cavallo, W. H. Syed, A. Neto. Equivalent transmission line models for the analysis of edge effects in finite connected and tightly coupled arrays [J]. IEEE Transactions on Antennas and Propagation, 2017, 65(4): 1788–1796.MathSciNetCrossRefGoogle Scholar
  39. [39]
    I. Tzanidis, K. Sertel, J. L. Volakis. UWB low-profile tightly coupled dipole array with integrated balun and edge terminations [J]. IEEE Transactions on Antennas and Propagation, 2013, 61(6): 3017–3025.CrossRefGoogle Scholar
  40. [40]
    J. A. Kasemodel, C. C. Chen, J. L. Volakis. Wideband planar array with integrated feed and matching network for wide-angle scanning [J]. IEEE Transactions on Antennas and Propagation, 2013, 61(9): 4528–4537.CrossRefGoogle Scholar
  41. [41]
    E. Yetisir, N. Ghalichechian, J. L. Volakis. Ultrawideband array with 70° scanning using FSS superstrate [J]. IEEE Transactions on Antennas and Propagation, 2016, 64(10): 4256–4265.MathSciNetCrossRefGoogle Scholar
  42. [42]
    H. Zhang, S. Yang, Y. Chen, et al. Wideband dual-polarized linear array of tightly coupled elements [J]. IEEE Transactions on Antennas and Propagation, 2018, 66(1): 476–480.CrossRefGoogle Scholar
  43. [43]
    I. Tzanidis, K. Sertel, J. L. Volakis. Interwoven spiral array (ISPA) with a 10:1 bandwidth on a ground plane [J]. IEEE Antennas and Wireless Propagation Letters, 2011, 10: 115–118.CrossRefGoogle Scholar
  44. [44]
    J. G. Maloney, B. N. Baker, R. T. Lee, et al. Wide scan, integrated printed circuit board, fragmented aperture array antennas [C]//IEEE International Symposium on Antennas and Propagation (APSURSI), Washington, 2011: 1965–1968.CrossRefGoogle Scholar
  45. [45]
    W. E. I. Liu, Z. N. Chen, X. Qing, et al. Miniaturized wideband metasurface antennas [J]. IEEE Transactions on Antennas and Propagation, 2017, 65(12): 7345–7349.CrossRefGoogle Scholar
  46. [46]
    W. E. I. Liu, Z. N. Chen, X. Qing. Compact wideband metasurface-based circularly polarized antenna for Ka-band phased array [C]//IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC), Verona, 2017: 17–20.CrossRefGoogle Scholar
  47. [47]
    L. Gu, Y. W. Zhao, Q. M. Cai, et al. Scanning enhanced low-profile broadband phased array with radiator-sharing approach and defected ground structures [J]. IEEE Transactions on Antennas and Propagation, 2017, 65(11): 5846–5854.CrossRefGoogle Scholar

Copyright information

© Posts & Telecom Press and Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.School of Physical ElectronicsUniversity of Electronic Science and Technology of ChinaChengduChina

Personalised recommendations