Reverse Engineering a Bronze Cannon from the La Belle Shipwreck

Abstract

The goal of this project was to scan and reverse engineer one of three bronze cannons (41MG86 - 11900-1) recovered from the La Belle excavation, which is currently on exhibit at the Bullock Texas State History Museum in Austin, Texas. A freeform computer aided design (CAD) model was generated based upon the topology of the three-dimensional (3-D) mesh in Geomagic Design X with a desired maximum deviation of 0.1 mm between the model and the mesh. Deviations were calculated in Geomagic Control X using the surface model as the reference data, and the mesh as the measured data. A custom patch network was subsequently designed using a series of iterative revisions until the whole of the surface model met with the specified tolerance. The 3-D surface model of the cannon will be replicated in a variety of media at variable scales for use in exhibits and for educational and promotional material for the Texas Historical Commission, the Republic of France, and their partner museums.

Abstracto

El objetivo de este proyecto era escanear y aplicar ingeniería inversa a uno de los tres cañones de bronce (41MG86 - 11900-1) recuperados de la excavación La Belle, que actualmente se exhibe en el Museo de Historia del Estado de Texas Bullock en Austin, Texas. Se generó un modelo de diseño asistido por computadora (CAD) de forma libre basado en la topología de la malla tridimensional (3-D) en Geomagic Design X con una desviación máxima deseada de 0,1 mm entre el modelo y la malla. Las desviaciones se calcularon en Geomagic Control X utilizando el modelo de superficie como los datos de referencia y la malla como los datos medidos. Posteriormente, se diseñó una red de parches adaptada utilizando una serie de revisiones iterativas hasta que todo el modelo de superficie cumplió con la tolerancia especificada. El modelo de superficie 3-D del cañón se replicará en una variedad de medios a escalas variables para su uso en exhibiciones y para material educativo y promocional para la Comisión Histórica de Texas, la República de Francia y sus museos asociados.

Résumé

L'objectif de ce projet était d'effectuer un scan et une rétro-ingénierie de l'un des trois canons de bronze (41MG86 - 11900-1) récupérés sur les fouilles du navire La Belle, qui est actuellement exposé au Bullock Texas State History Museum à Austin, Texas. Un modèle de conception assistée par ordinateur (CAO) en forme libre a été généré sur la base de la topologie du maillage tridimensionnel (3D) sous Geomagic Design X avec une variation maximum souhaitée de 0,1 mm entre le modèle et le maillage. Les variations ont été calculées sous Geomagic Control X en utilisant le modèle de surface au titre des données de référence et le maillage au titre des données de mesure. Un réseau patch sur mesure a par la suite été conçu en utilisant une série de révisions itératives jusqu'à ce que la totalité du modèle de surface corresponde à la tolérance spécifiée. Le modèle de surface 3D du canon sera reproduit sur une variété de supports à des échelles variables pour une utilisation dans le cadre d'expositions et de publications éducatives et promotionnelles pour la Commission historique du Texas, la République de France et leurs musées partenaires.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

References

  1. Arnold, J. Barto, III 1996a Magnetometer Survey of La Salles Ship the Belle. International Journal of Nautical Archaeology 25:243–249.

  2. Arnold, J. Barto, III 1996b The Texas Historical Commissions Underwater Archaeological Survey of 1995 and the Preliminary Report on the Belle, La Salles Shipwreck of 1686. Historical Archaeology 30(4):66–87.

  3. ASME 2009 ASME Y14.5-2009. The American Society of Mechanical Engineers, New York, NY.

  4. Babu, T. Suresh, and Romy D. Thumbanga 2011 Reverse Engineering, CAD\CAM & Pattern Less Process Applications in Casting—A Case Study. International Journal of Mechanics 5:40–47.

    Google Scholar 

  5. Baik, Ahmad 2017 From Point Cloud to Jeddah Heritage BIM Nasif Historical House—Case Study. Digital Applications in Archaeology and Cultural Heritage 4:1–18. https://doi.org/10.1016/j.daach.2017.02.001.

    Article  Google Scholar 

  6. Boier-Martin, Ioana, and Holly Rushmeier 2006 Reverse Engineering Methods for Digital Restoration Applications. Journal of Computing and Information Science in Engineering 6(4):364–371. https://doi.org/10.1115/1.2356497.

    Article  Google Scholar 

  7. Bouzakis, Konstantinos Dionysios, Dimitris Pantermalis, Kyriakos Efstathiou, Emmanouil Varitis, George Paradisiadis, and Ioannis Mavroudis 2010 An Investigation of Ceramic Forming Method Using Reverse Engineering Techniques: The Case of Oinochoai from Dion, Macedonia, Greece. Journal of Archaeological Method and Theory 18:111–124. https://doi.org/10.1007/s10816-010-9081-0.

  8. Bruseth, James E. 2017 Background. In La Belle: The Archaeology of a Seventeenth-Century Ship of New World Colonization, James E. Bruseth, Amy A. Borgens, Bradford M. Jones, and Eric D. Ray, editors, pp. 3–25. Texas A&M University Press, College Station.

  9. Bruseth, James E., Amy A. Borgens, Bradford M. Jones, and Eric D. Ray 2017 LaBelle: The Archaeology of a Seventeenth-Century Ship of New World Colonization. Texas A&M University Press, College Station.

  10. Bruseth, James E., and Toni S. Turner 2004 From a Watery Grave: The Discovery and Excavation of La Salle’s Shipwreck, La Belle. Texas A&M University Press, College Station.

    Google Scholar 

  11. Castro-García, Miguel, José Ignacio Rojas-Sola, and Eduardo de la Morena-de la Fuente 2015 Technical and Functional Analysis of Albolafia Waterwheel (Cordoba, Spain): 3D Modeling, Computational-Fluid Dynamics Simulation and Finite-Element Analysis. Energy Conversion and Management 92:207–214. https://doi.org/10.1016/j.enconman.2014.12.047.

    Article  Google Scholar 

  12. Denard, Hugh 2012 A New Introduction to The London Charter. In Paradata and Transparency in Virtual Heritage, A. Bentkowska-Kafel, H. Denard, and D. Baker, editors, pp. 57–72. Routledge, New York, NY.

    Google Scholar 

  13. Foecke, Tim, Li Ma, Matthew A. Russell, David L. Conlin, and Larry E. Murphy 2010 Investigating Archaeological Site Formation Processes on the Battleship USS Arizona using Finite Element Analysis. Journal of Archaeological Science 37:1090–1101. https://doi.org/10.1016/j.jas.2009.12.009.

    Article  Google Scholar 

  14. Forum Internacional de Arqueologia Virtual 2011 Principles of Seville: International Principles of Virtual Archaeology <http://smartheritage.com/seville-principles/seville-principles>. Accessed 1 May 2017.

  15. Gandon, Enora, Rémy Casanova, Patrick Sainton, Thelma Coyle, Valentine Roux, Blandine Bril, and Reinoud J. Bootsma 2011 A Proxy of Potters Throwing Skill: Ceramic Vessels Considered in Terms of Mechanical Stress. Journal of Archaeological Science 38:1080–1089. https://doi.org/10.1016/j.jas.2010.12.003.

    Article  Google Scholar 

  16. Henzold, G. 2006 Geometrical Dimensioning and Tolerancing for Design, Manufacturing and Inspection: A Handbook for Geometrical Product Specification using ISO and ASME Standards, 2nd edition. Elsevier, Oxford, UK.

    Google Scholar 

  17. Keith, Donald H. 2017 Artillery. In La Belle: The Archaeology of a Seventeenth-Century Ship of New World Colonization, James E. Bruseth, Amy A. Borgens, Bradford M. Jones, and Eric D. Ray, editors, pp. 353–372. Texas A&M University Press, College Station.

    Google Scholar 

  18. Keith, Donald H., Worth Carlin, and John de Bry 1997 A Bronze Cannon from La Belle, 1686: Its Construction, Conservation, and Display. The International Journal of Nautical Archaeology and Underwater Exploration 13:45–63.

    Article  Google Scholar 

  19. Kilikoglou, Vassilis, and George Vekinis 2002 Failure Prediction and Function Determination of Archaeological Pottery by Finite Element Analysis. Journal of Archaeological Science 29:1317–1325. https://doi.org/10.1006/jasc.2001.0775.

    Article  Google Scholar 

  20. Koumartzis, N., D. Tzetzis, P. Kyratsis, and R. G. Kotsakis 2015 A New Music Instrument from Ancient Times: Modern Reconstruction of the Greek Lyre of Hermes using 3D Laser Scanning, Advanced Computer Aided Design and Audio Analysis. Journal of New Music Research 44:324–346. https://doi.org/10.1080/09298215.2015.1106563.

    Article  Google Scholar 

  21. Krivoš, E., R. Pastirčák, and P. Lehocký 2014 Using of the Reverse Engineering Method for the Production of Prototype Molds by Patternless Process Technology. Archives of Foundry Engineering 14. https://doi.org/10.2478/afe-2014-0048.

  22. Levy, Richard, and Peter Dawson 2009 Using Finite Element Methods to Analyze Ancient Architecture: An Example from the North American Arctic. Journal of Archaeological Science 36:2298–2307. https://doi.org/10.1016/j.jas.2009.06.014.

    Article  Google Scholar 

  23. Liu, Ke, and Jun Ma 2016 3D-Scanning and Computer Reverse Engineering Technology to Preserve Inscriptions at Beihai Park. International Journal of Simulation: Systems, Science and Technology 17(26):38.1–38.37. https://doi.org/10.5013/IJSSST.a.17.26.38.

    Article  Google Scholar 

  24. Messler, Robert W., Jr. 2014 Reverse Engineering: Mechanisms, Structures, Systems and Materials. McGraw-Hill Education, New York, NY.

    Google Scholar 

  25. Moshenska, Gabriel 2016 Reverse Engineering and the Archaeology of the Modern World. Forum Dritische Archäologie 5:16–28. https://doi.org/10.6105/journal.fka.2016.5.2.

    Article  Google Scholar 

  26. Neamtu, Calin, Sorin Popescu, Daniela Popescu, and Razvan Mateescu 2012 Using Reverse Engineering in Archaeology: Ceramic Pottery Reconstruction. Journal of Automation, Mobile Robotics & Intelligent Systems 6(2):55–59.

    Google Scholar 

  27. Pierce, Christopher 2005 Reverse Engineering the Ceramic Cooking Pot: Cost and Performance Properties of Plain and Textured Vessels. Journal of Archaeological Method and Theory 12:117–157. https://doi.org/10.1007/s10816-005-5665-5.

    Article  Google Scholar 

  28. Rodríguez, Adrián, Luis Norberto López de Lacalle, Amaia Calleja, Asier Fernández, and Aitzol Lamikiz 2012 Maximal Reduction of Steps for Iron Casting One-of-a-Kind Parts. Journal of Cleaner Production 24:48–55. https://doi.org/10.1016/j.jclepro.2011.11.054.

    Article  Google Scholar 

  29. Segreto, Tiziana, Allessandra Caggiano, and Doriana D’Addona 2013 Assessment of Laser-Based Reverse Engineering Systems for Tangible Cultural Heritage Conservation. International Journal of Computer Integrated Manufacturing 26:857–865. https://doi.org/10.1080/0951192x.2013.799781.

    Article  Google Scholar 

  30. Selden, Robert Z., Jr. 2015 Using Photogrammetry to Document, Analyze, and Reverse-Engineer Grave Markers. Technical Briefs in Historical Archaeology 9:49–56.

    Google Scholar 

  31. Selden, Robert Z., Jr., Bernard Means, Edward Iglesias, and Kreg Mosier 2018 Morphological Variation in Three-Dimensional Printed Replicas. CRHR Research Reporta 4:Article 3 <https://scholarworks.sfasu.edu/crhr_research_reports/vol4/iss1/3/>.

  32. Srinivasan, Vijay 2008 Standardizing the Specification, Verification, and Exchange of Product Geometry: Research, Status and Trends. Computer-Aided Design 40(7):738–749. https://doi.org/10.1016/j.cad.2007.06.006.

    Article  Google Scholar 

  33. Zvietcovich, Fernando, Benjamin Castaneda, and Renato Perucchio 2015 3D Solid Model Updating of Complex Ancient Monumental Structures based on Local Geometrical Meshes. Digital Applications in Archaeology and Cultural Heritage 2(1):12–27. https://doi.org/10.1016/j.daach.2015.02.001.

    Article  Google Scholar 

Download references

Acknowledgments:

We extend our gratitude to the Bullock Texas State History Museum for access, and the Texas Historical Commission for the requisite permissions needed to scan the cannon. The cannon derives from the contents of La Belle, all of which is the property of the Republic of France and from the collection of the musée national de la Marine. Our thanks to Kersten Bergstrom, Tad Britt, and Bernard K. Means for their thoughtful comments on an earlier draft.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Robert Z. Selden Jr.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Selden, R.Z., Jones, B.M. Reverse Engineering a Bronze Cannon from the La Belle Shipwreck. Hist Arch (2021). https://doi.org/10.1007/s41636-020-00280-2

Download citation

Keywords

  • France
  • virtual archaeology
  • nautical archaeology
  • La Belle
  • museum studies