Skip to main content
Log in

Perspective: group theory analysis and special self-similarity classes in Rayleigh–Taylor and Richtmyer–Meshkov interfacial mixing with variable accelerations

  • Special Topics
  • Published:
Reviews of Modern Plasma Physics Aims and scope Submit manuscript

Abstract

Rayleigh–Taylor (RT) and Richtmyer–Meshkov (RM) instabilities and RT/RM interfacial mixing govern a broad range of processes in nature and technology, at astrophysical and at molecular scales. They are a source of paradigm shifts in science, mathematics, and engineering. In realistic environments, RT/RM dynamics are often caused by variable accelerations. This work employs the group theory to systematically approach RT/RM dynamics with accelerations varying as power law in time and in space, through the direct link of the governing equations to the momentum model. We identify characteristics of RT dynamics and RM dynamics and RT-to-RM transitions, and investigate symmetries, invariant forms, scaling relations, correlations, fluctuation, and spectra of scale-invariant RT mixing and RM mixing. For accelerations varying in time and in space, we discover special self-similarity classes of RT/RM mixing, and explore attributes of their point and interval sub-classes. Depending upon the accelerations, the scale-invariant RT dynamics can be ballistic, quasi-Kolmogorov, steady flex, and quasi-diffusive; it can also belong to the associated super- and sub-intervals; the scale-invariant RM dynamics is sub-diffusive. For any acceleration, RT/RM mixing retains memory of the deterministic (initial and flow) conditions. These characteristics significantly impact the understanding of RT/RM relevant processes in nature, open perspectives unexplored before for better control of RT/RM instabilities in technology, and advance modeling capabilities of RT/RM dynamics in fluids, plasmas, and materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data availability

The methods, the results, and the data presented in this work are freely available to the readers in the paper and on the request from the corresponding author.

References

  • S.I. Abarzhi, Stable steady flows in Rayleigh-Taylor instability. Phys. Rev. Lett. 81, 337 (1998)

    Article  ADS  Google Scholar 

  • S.I. Abarzhi, Review of nonlinear dynamics of the unstable fluid interface: conservation laws and group theory. Phys. Scr. 2008, 014012 (2008a)

    Article  MathSciNet  Google Scholar 

  • S.I. Abarzhi, Coherent structures and pattern formation in the Rayleigh-Taylor turbulent mixing. Phys. Scr. 78, 015401 (2008b)

    Article  ADS  MathSciNet  Google Scholar 

  • S.I. Abarzhi, Review of theoretical modeling approaches of Rayleigh-Taylor instabilities and turbulent mixing. Philos. Trans. R. Soc. A 368, 1809 (2010a)

    Article  ADS  Google Scholar 

  • S.I. Abarzhi, On fundamentals of Rayleigh-Taylor turbulent mixing. Europhys. Lett. 91, 12867 (2010b)

    Article  Google Scholar 

  • S.I. Abarzhi, Special class of self-similar dynamics for Rayleigh–Taylor mixing with variable acceleration. arXiv:1901.04563. Published as: Abarzhi SI 2021 Self-similar interfacial mixing with variable acceleration. Phys. Fluids 33, 122110 (2021)

  • S.I. Abarzhi, Invariant forms and control dimensional parameters in complexity quantification. Front. Appl. Math. Stat. 9, 1201043 (2023)

    Article  Google Scholar 

  • S.I. Abarzhi, W.A. Goddard, Interfaces and mixing: non-equilibrium transport across the scales. Proc. Natl. Acad. Sci. u.s.a. 116, 18171 (2019)

    Article  ADS  Google Scholar 

  • S.I. Abarzhi, R. Rosner, Comparative study of approaches for modeling Rayleigh-Taylor turbulent mixing. Phys. Scr. T142, 014012 (2010)

    Article  ADS  Google Scholar 

  • S.I. Abarzhi, K.R. Sreenivasan, Self-similar Rayleigh-Taylor mixing with accelerations varying in time and space. Proc. Natl. Acad. Sci. u.s.a. 119, e2118589119 (2022)

    Article  MathSciNet  Google Scholar 

  • S.I. Abarzhi, K.C. Williams, Scale-dependent Rayleigh-Taylor dynamics with variable acceleration by group theory approach. Phys. Plasmas 27, 072107 (2020)

    Article  ADS  Google Scholar 

  • S.I. Abarzhi, A. Gorobets, K.R. Sreenivasan, Turbulent mixing in immiscible, miscible and stratified media. Phys. Fluids 17, 081705 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  • S.I. Abarzhi, K. Nishihara, R. Rosner, A multi-scale character of the large-scale coherent dynamics in the Rayleigh-Taylor instability. Phys. Rev. E 73, 036310 (2006)

    Article  ADS  Google Scholar 

  • S.I. Abarzhi, A.K. Bhowmick, A. Naveh, A. Pandian, N.C. Swisher, R.F. Stellingwerf, W.D. Arnett, Supernova, nuclear synthesis, fluid instabilities and mixing. Proc. Natl. Acad. Sci. u.s.a. 116, 18184 (2019a)

    Article  ADS  MathSciNet  Google Scholar 

  • S.I. Abarzhi, D.V. Ilyin, W.A. Goddard III., S. Anisimov, Interface dynamics: new mechanisms of stabilization and destabilization and structure of flow fields. Proc. Natl. Acad. Sci. u.s.a. 116, 18218 (2019b)

    Article  ADS  Google Scholar 

  • S.I. Abarzhi, D.L. Hill, K.C. Williams, C.E. Wright, Buoyancy and drag in Rayleigh-Taylor and Richtmyer-Meshkov linear, nonlinear and mixing dynamics. Appl. Math. Lett. 31, 108036 (2022)

    Article  MathSciNet  Google Scholar 

  • S.I. Abarzhi, D.L. Hill, K.C. Williams, J.T. Li, B.A. Remington, W.D. Arnett, Fluid dynamics mathematical aspects of supernova remnants. Phys. Fluids 35, 034106 (2023)

    Article  ADS  Google Scholar 

  • S.I. Abarzhi, K. R. Sreenivasan, Turbulent mixing and beyond. Phil. Trans. Roy. Soc. A (2010). ISBN 085403806X.

  • S.I. Abarzhi, S. Gauthier, K.R. Sreenivasan, Turbulent mixing and beyond: non-equilibrium processes from atomistic to astrophysical scales. I, II. Royal Society Publishing (2013), ISBN 1782520384, ISBN 0854039864.

  • B. Akula, P. Suchandra, M. Mikhaeil, D. Ranjan, Dynamics of unstably stratified free shear flows: an experimental investigation of coupled Kelvin-Helmholtz and Rayleigh-Taylor instability. J. Fluid Mech. 816, 619 (2017)

    Article  ADS  Google Scholar 

  • U. Alon, J. Hecht, D. Mukamel, D. Shvarts, Scale-invariant mixing rate of hydrodynamically unstable interfaces. Phys. Rev. Lett. 72, 2867 (1994)

    Article  ADS  Google Scholar 

  • U. Alon, J. Hecht, D. Offer, D. Shvarts, Power-laws and similarity of Rayleigh-Taylor and Richtmyer-Meshkov mixing fronts at all density ratios. Phys. Rev. Lett. 74, 534 (1995)

    Article  ADS  Google Scholar 

  • V.A. Andronov, I.G. Zhidov, E.E. Meshkov, N.V. Nevmerzhitsky, V.V. Nikiforov, A.N. Razin, V.G. Rogachov, A.I. Tolshmyakov, Y.V. Yanilkin, Computational and experimental studies of hydrodynamic instabilities and turbulent mixing: Review of VNIIEF efforts. Summary report. LA-SUB-94–168, 1–212. Los Alamos National Laboratory, USA (1994). https://doi.org/10.2172/80367

  • V.A. Andronov, I.G. Zhidov, E.E. Meshkov, N.V. Nevmerzhitsky, V.V. Nikiforov, A.N. Razin, V.G. Rogachov, A.I. Tolshmyakov, Y.V. Yanilkin, Computational and experimental studies of hydrodynamic instabilities and turbulent mixing. Report LA-12896, 1–219. Los Alamos National Laboratory, USA (1995). https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-12896

  • S.I. Anisimov, R.P. Drake, S. Gauthier, E.E. Meshkov, S.I. Abarzhi, What is certain and what is not so certain in our knowledge of Rayleigh-Taylor mixing? Phil. Trans. R. Soc. A 371, 20130266 (2013)

    Article  ADS  Google Scholar 

  • D. Arnett, Supernovae and Nucleosynthesis (Princeton University Press, 1996). (ISBN 9780691011479)

    Book  Google Scholar 

  • Asia Pacific Conference on Plasma Physics, Invited Symposium (2021). http://aappsdpp.org/DPP2021/topical.html

  • W. Baade, F. Zwicky, On super-novae. Proc. Natl. Acad. Sci. u.s.a. 20, 254 (1934)

    Article  ADS  Google Scholar 

  • S.M. Bakhrakh, O.B. Drennov, N.P. Kovalev, A.I. Lebedev, E.E. Meshkov, A.L. Mikhailov, N.V. Nevmerzhitsky, P.N. Nizovtsev, V.A. Rayevsky, G.P. Simonov, V.P. Solovyev, I.G. Zhidov, Hydrodynamic Instability in Strong Media. Report UCRL-CR-126710, 1–164. Lawrence Livermore National Laboratory, USA (1997). https://doi.org/10.2172/515973

  • P.R. Barbosa, K.C.O. Crivelaro, J.R. Paulo Seleghim, On the application of self-organizing neural networks in gas-liquid and gas-solid flow regime identification. J. Braz. Soc. Mech. Sci. Eng. 32, 15 (2010)

    Article  Google Scholar 

  • G.I. Baremblatt, Scaling Self-Similarity and Intermediate Asymptotics (Cambridge University Press, Cambridge, 1996). (ISBN 9781107050242)

    Book  Google Scholar 

  • G.K. Batchelor, The Theory of Homogeneous Turbulence (Cambridge Unviersity Press, Cambridge, 1953). (ISBN 9780521041171)

    Google Scholar 

  • S.Z. Belenki, E.S. Fradkin, Theory of turbulent mixing. Trudi FIAN 29, 207 (1965). (in Russian)

    Google Scholar 

  • M. Berning, A.M. Rubenchik, A weakly nonlinear theory for the dynamical Rayleigh-Taylor instability. Phys. Fluids 10, 1564 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  • R. Betti, O.A. Hurricane, Inertial-confinement fusion with lasers. Nat. Phys. 12, 435 (2006)

    Article  Google Scholar 

  • G. Birkhoff, Taylor instability and laminar mixing. Los Alamos Report LA 1862, 1 (1955)

    Google Scholar 

  • P.W. Bridgman, Dimensional Analysis (Yale University Press, New Haven, 1931)

    Google Scholar 

  • M.J. Buehler, H. Tang, A.C.T. van Duin, W.A. Goddard, Threshold crack speed controls dynamical fracture of silicon single crystals. Phys. Rev. Lett. 99, 165502 (2007)

    Article  ADS  Google Scholar 

  • W.H. Cabot, A.W. Cook, Reynolds number effects on Rayleigh-Taylor instability with possible implications for type Ia supernovae. Nat. Phys. 2, 562 (2006)

    Article  Google Scholar 

  • A. Casner, C. Mailliet, S. Khan, D. Martinez, N. Izumi, D. Kalantar, P.D. Nicola, J.M.D. Nicola, E.L. Bel, I. Igumenshchev, V.T. Tikhonchuk, B.A. Remington, L. Masse, V.A. Smalyuk, Long-duration planar direct-drive hydrodynamics experiments on the NIF. Plasma Phys. Control Fusion 60, 014012 (2017)

    Article  ADS  Google Scholar 

  • A. Cassiopeia, (2004). https://hubblesite.org/contents/media/images/2006/30/1945-Image.html?news=true

  • W.H.R. Chan, S.S. Jain, H. Hwang, A. Naveh, S.I. Abarzhi, Theory and simulations of scale-dependent Rayleigh-Taylor dynamics. Phys. Fluids 35, 034106 (2023)

    Article  Google Scholar 

  • S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Oxford University Press, London, 1961)

    Google Scholar 

  • M. Chertkov, Phenomenology of Rayleigh-Taylor turbulence. Phys. Rev. Lett. 91, 115001 (2003)

    Article  ADS  Google Scholar 

  • Crab Nebula (2010). https://www.nasa.gov/multimedia/imagegallery/image_feature_1604.html

  • S.B. Dalziel, P.F. Linden, D.L. Youngs, Self-similarity and internal structure of turbulence induced by Rayleigh-Taylor instability. J. Fluid Mech. 399, 1 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  • R.M. Davies, G.I. Taylor, The mechanics of large bubbles rising through extended liquids and through liquids in tubes. Proc. R. Soc. A 200, 375 (1950)

    ADS  Google Scholar 

  • G. Dimonte, D.L. Youngs, A. Dimits, S. Weber, M. Marinak, S. Wunsch, C. Garasi, A. Robinson, M.J. Andrews, P. Ramaprabhu, A.C. Calder, B. Fryxell, J. Biello, L. Dursi, P. MacNeice, K. Olson, P. Ricker, R. Rosner, F. Timmes, H. Tufo, Y.N. Young, M. Zingale, A comparative study of the turbulent Rayleigh-Taylor instability using high-resolution three-dimensional numerical simulations: the Alpha-Group collaboration. Phys. Fluids 16, 1668 (2004)

    Article  ADS  Google Scholar 

  • P.E. Dimotakis, Turbulent mixing. Ann. Rev. Fluid Mech. 37, 329 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  • R.P. Drake, Perspectives on high-energy-density physics. Phys. Plasmas 16, 055501 (2009)

    Article  ADS  Google Scholar 

  • R.P. Drake, Spike penetration in blast-wave-driven instabilities. Astrophys. J. 744, 184 (2012)

    Article  ADS  Google Scholar 

  • J.R. Elsnab, J.P. Monty, C.M. White, M.M. Koochesfahani, J.C. Klewicki, Efficacy of single-component MTV to measure turbulent wall-flow velocity derivative profiles at high resolution. Exp. Fluids 58, 128 (2017)

    Article  Google Scholar 

  • E. Fermi, J. von Neumann, Taylor instability of an incompressible liquid 26, in 1962 Collected Papers, 2 816. ed. by E. Fermi (The University of Chicago Press, Chicago, 1951)

    Google Scholar 

  • B. Fryxell, W.D. Arnett, E. Mueller, Instabilities and clumping in SN 1987A. Astrophys. J. 367, 619 (1991)

    Article  ADS  Google Scholar 

  • G.L. Galileo, Dialogo sopra i due massimi sistemi del mondo. Published by Giovanni Battista Landini. Florence (1632)

  • P.R. Garabedian, On steady-state bubbles generated by Taylor instability. Proc R Soc A 241, 423 (1957)

    ADS  MathSciNet  Google Scholar 

  • S. Gauthier, M. Bonnet, A k-ε model for turbulent mixing in shock-tube flows induced by Rayleigh-Taylor instability. Phys. Fluids A 2, 1685 (1990)

    Article  ADS  Google Scholar 

  • S. Gauthier, B. Le Creurer, Compressibility effects in Rayleigh-Taylor instability-induced flows. Philos. Trans. R. Soc. A 368, 1681 (2010)

    Article  ADS  Google Scholar 

  • J. Glimm, D.H. Sharp, Chaotic mixing as a renormalization-group fixed-point. Phys. Rev. Lett. 64, 2137 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  • J. Glimm, D.H. Sharp, T. Kaman, H. Lim, New directions for Rayleigh-Taylor mixing. Philos. Trans. R. Soc. A 371, 20120183 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  • M. Gorokhovski, M. Herrmann, Modeling primary atomization. Ann. Rev. Fluid Mech. 40, 343 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  • S.Y. Grigoryev, S.A. Dyachkov, A.N. Parshikov, V.V. Zhakhovsky, Limited and unlimited spike growth from grooved free surface of shocked solid. J. Appl. Phys. 131, 065104 (2022)

    Article  ADS  Google Scholar 

  • M. Groom, B. Thornber, The influence of initial perturbation power spectra on the grwoth of turbulent mixing layer induced by Richtyer-Meshkov instability. Physica D 407, 132463 (2020)

    Article  MathSciNet  Google Scholar 

  • G. Guderley, Starke Kugelige und Zylindrische Verdichtungsstosse in der Nahe des Kugelmitterpunktes bnw. der Zylinderachse. Luftfahrtforschung 19, 302 (1942). (in German)

    MathSciNet  Google Scholar 

  • S.W. Haan, Onset of nonlinear saturation for Rayleigh-Taylor growth in the presence of a full spectrum of modes. Phys. Rev. A 39, 5812 (1989)

    Article  ADS  Google Scholar 

  • S.W. Haan, J.D. Lindl, D.A. Callahan, D.S. Clark, J.D. Salmonson, B.A. Hammel, L.J. Atherton, R.C. Cook, M.J. Edwards, S. Glenzer, A.V. Hamza, S.P. Hatchett, M.C. Herrmann, D.E. Hinkel, D.D. Ho, H. Huang, O.S. Jones, J. Kline, G. Kyrala, O.L. Landen, B.J. MacGowan, M.M. Marinak, D.D. Meyerhofer, J.L. Milovich, K.A. Moreno, E.I. Moses, D.H. Munro, A. Nikroo, R.E. Olson, K. Peterson, S.M. Pollaine, J.E. Ralph, H.F. Robey, B.K. Spears, P.T. Springer, L.J. Suter, C.A. Thomas, R.P. Town, R. Vesey, S.V. Weber, H.L. Wilkens, D.C. Wilson, Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility. Phys. Plasmas 18, 051001 (2011)

    Article  ADS  Google Scholar 

  • J.C.V. Hansom, P.A. Rosen, T.J. Goldack, K. Oades, P. Fieldhouse, N. Cowperthwaite, D.L. Youngs, N. Mawhinney, A.J. Baxter, Radiation driven planar foil instability and mix experiments at the AWE HELEN laser. Laser Part. Beams 8, 51 (1990)

    Article  ADS  Google Scholar 

  • H. Helmholtz, Über discontinuierliche Flüssigkeits-Bewegungen [On the discontinuous movements of fluids]. Monatsberichte Der Königlichen Preussische Akademie Der Wissenschaften Zu Berlin 23, 215 (1868)

    Google Scholar 

  • D.L. Hill, S.I. Abarzhi, Nonlinear Richtmyer-Meshkov dynamics with variable acceleration by group theory approach. Appl. Math. Lett. 105, 106338 (2020)

    Article  MathSciNet  Google Scholar 

  • D.L. Hill, S.I. Abarzhi, On Rayleigh-Taylor and Richtmyer-Meshkov dynamics with inverse-quadratic power-law acceleration. Front. Appl. Math. Stat. 7, 735526 (2021)

    Article  Google Scholar 

  • D.L. Hill, A.K. Bhowmick, D.V. Ilyin, S.I. Abarzhi, Group theory analysis of early-time dynamics of Rayleigh-Taylor instability with time varying acceleration. Phys. Rev. Fluids 4, 063905 (2019)

    Article  ADS  Google Scholar 

  • E.J. Hinch, Perturbation Methods (Cambridge University Press, Cambrudge, 1991). (ISBN 9781139172189)

    Book  Google Scholar 

  • D.V. Ilyin, S.I. Abarzhi, Interface dynamics under thermal heat flux, inertial stabilization and destabilizing acceleration. Springer Nature Appl. Sci. 4, 197 (2022)

    Google Scholar 

  • D.V. Ilyin, Y. Fukumoto, W.A. Goddard III., S.I. Abarzhi, Analysis of dynamics, stability and flow fields’ structure of an accelerated hydrodynamic discontinuity with interfacial mass flux by a general matrix method. Phys. Plasmas 25, 112105 (2018)

    Article  ADS  Google Scholar 

  • D.V. Ilyin, W.A. Goddard III., J.J. Oppenheim, T. Cheng, First principles–based reaction kinetics from reactive molecular dynamics simulations: application to hydrogen peroxide decomposition. Proc. Natl. Acad. Sci. u.s.a. 116, 18202 (2019)

    Article  ADS  Google Scholar 

  • B.M. Johnson & O. Schilling, Reynolds-averaged Navier-Stokes model predictions of linear instability. i. Buoyancy- and shear-driven flows. J Turbulence 12, 1; Johnson BM and Schilling O 2011 Reynolds-averaged Navier-Stokes model predictions of linear instability. ii. Shock-driven flows. J Turbulence, 12, 1 (2011)

  • L.P. Kadanoff, Statistical Physics: Statistics, Dynamics and Renormalization (World Scientific, 2000)

    Book  Google Scholar 

  • K. Kadau, J.L. Barber, T.C. Germann, B.L. Holian, B.J. Alder, Atomistic methods in fluid simulation. Philos. Trans. R. Soc. A 368, 1547 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  • J. Kane, W.D. Arnett, B.A. Remington, S.G. Glendinning, G. Bazan, R.P. Drake, B.A. Fryxell, Supernova experiments on the nova laser. Astrophys. J. Suppl. Ser. 127, 365–369 (2000)

    Article  ADS  Google Scholar 

  • T. Kaneko, K. Baba, R. Hatakeyama, Static gas–liquid interfacial direct current discharge plasmas using ionic liquid cathode. J. Appl. Phys. 105, 103306 (2009)

    Article  ADS  Google Scholar 

  • M.I. Kargopolov, Y.I. Merzlyakov, Fundamentals of group theory. [‘Osnovy teorii grup’] (in Russian). Nauka. Moscow. USSR (1982)

  • W. Kelvin Lord Thompson, Hydrokinetic solutions and observations. Phil. Mag. 42, 362 (1871)

    Article  Google Scholar 

  • J.C. Klewicki, G.P. Chini, J.F. Gibson, Prospectus: towards the development of high-fidelity models of wall turbulence at large Reynolds number. Philos. Trans. R. Soc. A 375, 20160092 (2017)

    Article  ADS  Google Scholar 

  • A.N. Kolmogorov, Local structure of turbulence in an incompressible fluid for very large Reynolds numbers. Dokl Akad Nauk SSSR 30, 299; Energy dissipation in locally isotropic turbulence. Dokl Akad Nauk SSSR 32, 19 (1941)

  • R.H. Kraichnan, The structure of isotropic turbulence at very high Reynolds numbers. J. Fluid Mech. 5, 497 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  • Y.A. Kucherenko, A.P. Pylaev, V.D. Murzakov, A.V. Belomestnih, V.N. Popov, A.A. Tyaktev, Experimental study into the Rayleigh-Taylor turbulent mixing zone heterogeneous structure. Laser Part. Beams 21, 375 (2003)

    Article  ADS  Google Scholar 

  • H.J. Kull, Theory of Rayleigh-Taylor instability. Phys. Rep. 206, 197 (1991)

    Article  ADS  Google Scholar 

  • C.C. Kuranz, H.-S. Park, C.M. Huntington, R.A. Miles, B.A. Remington, T. Plewa, M.R. Trantham, H.F. Robey, D. Shvarts, A. Shimony, K. Raman, S. MacLaren, W.C. Wan, F.W. Doss, J. Kline, K.A. Flippo, G. Malamud, T.A. Handy, S. Prisbrey, M.C. Krauland, S.R. Klein, E.C. Harding, R. Wallace, M.J. Grosskopf, D.C. Marion, D. Kalantar, E. Giraldez, R.P. Drake, How high energy fluxes may affect Rayleigh-Taylor instability growth in young supernova remnants. Nat. Commun. 9, 1564 (2018)

    Article  ADS  Google Scholar 

  • S. Kurien, N. Pal, The local wavenumber model for computation of turbulent mixing. Philos. Trans. R. Soc. A 380, 2219 (2022)

    Article  MathSciNet  Google Scholar 

  • L.D. Landau, E.M. Lifshitz, Theory Course I-X (Pergamon Press, New York, 1987)

    Google Scholar 

  • D. Layzer, On the instability of superposed fluids in a gravitational field. Astrophys. J. 122, 1 (1955)

    Article  ADS  MathSciNet  Google Scholar 

  • Z. Liang, W. Bu, K.J. Schweighofer, D.J. Walwark Jr., J.S. Harvey, G.R. Hanlon, D. Amoanu, C. Erol, I. Benjamin, M.L. Schlossman, Nanoscale view of assisted ion transport across the liquid–liquid interface. Proc. Natl. Acad. Sci. u.s.a. 116, 18227 (2019)

    Article  ADS  Google Scholar 

  • P.F. Linden, J.M. Redondo, D.L. Youngs, Molecular mixing in Rayleigh-Taylor instability. J. Fluid Mech. 265, 97 (1994)

    Article  ADS  Google Scholar 

  • Llor, Bulk turbulent transport and structure in Rayleigh-Taylor, Richtmyer-Meshkov, and variable acceleration instabilities. Laser Part. Beams 21, 305–310 (2003)

    Article  ADS  Google Scholar 

  • S. Lugomer, Laser generated Richtmyer–Meshkov instability and nonlinear wave paradigm in turbulent mixing. I. Central region of Gaussian spot. Laser Part. Beams 34, 687; 2017. Laser generated Richtmyer–Meshkov instability and nonlinear wave paradigm in turbulent mixing. II. Near-central region of Gaussian spot. Laser Part. Beams 35, 210. Lugomer S 2017 Laser-generated Richtmyer–Meshkov and Rayleigh–Taylor instabilities. III. Near-peripheral region of Gaussian spot. Laser and Particle Beams 35, 597 (2016)

  • A. Mahalov, Multiscale modeling and nested simulations of three-dimensional ionospheric plasmas: Rayleigh-Taylor turbulence and nonequilibrium layer dynamics at fine scales. Phys. Scr. 89, 098001 (2014)

    Article  ADS  Google Scholar 

  • March Meeting of the American Physical Society, Invited Symposium. 2019 Bulletin of the American Physical Society 64, N 2 (2019). https://meetings.aps.org/Meeting/MAR19/APS_epitome

  • March Meeting of the American Physical Society, Invited Symposium. 2022 Bulletin of the American Physical Society 67, N 3 (2022). https://meetings.aps.org/Meeting/MAR22/APS_epitome

  • C. Matsuoka, K. Nishihara, F. Cobos-Campos, Linear and nonlinear interactions between an interface and bulk vortices in Richtmyer-Meshkov instability. Phys. Plasmas 27, 112301 (2020)

    Article  ADS  Google Scholar 

  • F. Mayer, S. Richter, J. Westhauser, E. Blasco, C. Barner-Kowollik, M. Wegener, Multi-material 3D laser micro-printing using an integrated microfluidic system. Sci. Adv. 5, eaau916 (2019)

    Article  Google Scholar 

  • E.E. Meshkov, Instability of the interface of two gases accelerated by a shock. Sov. Fluid. Dyn. 4, 101–104 (1969)

    Article  ADS  Google Scholar 

  • E.E. Meshkov, Studies of Hydrodynamic Instabilities in Laboratory Experiments (Russia FGYC-VNIIEF, Sarov, 2006). (in Russian)

    Google Scholar 

  • E.E. Meshkov, Some peculiar features of hydrodynamic instability development. Phil. Trans. R. Soc. A 371, 20120288 (2013)

    Article  ADS  Google Scholar 

  • E.E. Meshkov, S.I. Abarzhi, On Rayleigh-Taylor interfacial mixing. Fluid Dyn. Res. 51, 065502 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  • E.E. Meshkov, V.V. Nikiforov, A.I. Tolshmyakov, ON the structure of turbulent mixing zone at the interface between two gases accelerated by shock wave. Combus. Explos. Shock Waves 26, 315 (1990)

    Article  Google Scholar 

  • R. Metzler, J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  • A.B. Migdal, Qualitative methods in quantum theory. Benjamin WA. ISBN 0–8053–7064–1. Translation from: Migdal AB 1973 Qualitative methods in quantum theory [Kachestvennye metody v kvantovoi teorii] (In Russian). Nauka (Moscow) (1977)

  • Clay Institute Millennium Problems (2024). http://claymath.org/millennium-problems

  • R. Narasimha, K.R. Sreenivasan, Relaminarization in highly accelerated turbulent boundary layers. J. Fluid Mech. 61, 417 (1973)

    Article  ADS  Google Scholar 

  • NASA, ESA, the Hubble Heritage Team, Pillars of Creation. Hubble WFC3/UVIS Image of M16 (2014). https://hubblesite.org/contents/media/images/2015/01/3471-Image.html?news=true

  • V.E. Neuvazhaev, Theory of turbulent mixing. Sov. Phys. Dokl. 20, 398 (1975)

    ADS  Google Scholar 

  • K. Nishihara, J.G. Wouchuk, C. Matsuoka, R. Ishizaki, V.V. Zhakhovsky, Richtmyer-Meshkov instability: theory of linear and nonlinear evolution. Philos. Trans. R. Soc. A 368, 1769 (2010)

    Article  ADS  Google Scholar 

  • S.S. Orlov, S.I. Abarzhi, S.-B. Oh, G. Barbastathis, K.R. Sreenivasan, Philos. Trans. Roy. Soc. A 368, 1705 (2010)

    Article  ADS  Google Scholar 

  • A. Pandian, R.F. Stellingwerf, S.I. Abarzhi, Effect of wave interference on nonlinear dynamics of Richtmyer-Meshkov flows. Phys. Rev. Fluids 2, 073903 (2017b)

    Article  ADS  Google Scholar 

  • A. Pandian, J.T. Li, S.I. Abarzhi, Deterministic and stochastic properties of self-similar Rayleigh-Taylor mixing induced by space varying acceleration. SIAM J. Appl. Math. 81, 1002 (2021)

    Article  MathSciNet  Google Scholar 

  • A. Pandian, N. C. Swisher, S. I. Abarzhi, Deterministic and stochastic dynamics of Rayleigh–Taylor mixing with a power-law time-dependent acceleration. Physica Scripta 92, 014002; 2017 Physica Scripta 92, 129501 (2017a)

  • P.S. Pershan, M.L. Schlossman, Liquid Surfaces and Interfaces: Synchrotron X-ray Methods (Cambridge Univ Press, Cambridge, 2012)

    Book  Google Scholar 

  • N. Peters, Turbulent Combustion (Cambridge University Press, 2000)

    Book  Google Scholar 

  • D. Pfefferle, S.I. Abarzhi, Whittle maximum likelihood estimate of spectral properties of Rayleigh-Taylor interfacial mixing using hot-wire anemometry experimental data. Phys. Rev. E 102, 053107 (2020)

    Article  ADS  Google Scholar 

  • N.A. Popov, V.A. Shcherbakov, V.N. Mineev, P.M. Zaydel’, A.I. Funtikov, Thermonuclear fusion in the explosion of a spherical charge—the problem of a gas-dynamic thermonuclear fusion. Physics - Uspekhi 51, 1047 (2008)

    Article  ADS  Google Scholar 

  • A. Pouquet, P.D. Mininni, The interplay between helicity and rotation in turbulence: implications for scaling laws and small-scale dynamics. Philos. Trans. R. Soc. A 368, 1635 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  • A. Pouquet, U. Frsich, J. Leorad, Strong MHD helical turbulence and the nonlinear dynamo effect. J. Fluid Mech. 77, 321 (1976)

    Article  ADS  Google Scholar 

  • M.E. Rafei, B. Thornber, Numerical study and buoyancy–drag modeling of bubble and spike distances in three-dimensional spherical implosions. Phys. Fluids 32, 124107 (2021)

    Article  Google Scholar 

  • K.M. Ramadan, M. Kamil, I. Tlili, O. Qisieh, Analysis of thermal creep effects on fluid flow and heat transfer in a micro-channel gas heating. ASME J. Therm. Sci. Eng. Appl. 13, 061011 (2021)

    Article  Google Scholar 

  • S. Rana, M. Herrmann, Primary atomization of a liquid jet in cross flow. Phys. Fluids 23, 091109 (2011)

    Article  ADS  Google Scholar 

  • J.W. Rayleigh Lord Strutt, Investigations of the character of the equilibrium of an incompressible heavy fluid of variable density. Proc. Lond. Math. Soc. 14, 170 (1883)

    MathSciNet  Google Scholar 

  • K.I. Read, Experimental investigation of turbulent mixing by Rayleigh-Taylor instability. Physica D 12, 45 (1984)

    Article  ADS  Google Scholar 

  • B.A. Remington, R.P. Drake, D.D. Ryutov, Experimental astrophysics with high power lasers and Z-pinches. Rev. Mod. Phys. 78, 755 (2006)

    Article  ADS  Google Scholar 

  • B.A. Remington, H.-S. Park, D.T. Casey, R.M. Cavallo, D.S. Clark, C.M. Huntington, C.C. Kuranz, A.R. Miles, S.R. Nagel, K.S. Raman, V.A. Smalyuk, Rayleigh-Taylor instabilities in high-energy density settings on the National Ignition Facility. Proc. Natl. Acad. Sci. u.s.a. 116, 18233 (2019)

    Article  ADS  Google Scholar 

  • R.D. Richtmyer, Taylor instability in shock acceleration of compressible fluids. Commun. Pure Appl. Math. 13, 297 (1960)

    Article  MathSciNet  Google Scholar 

  • G. Rigon, B. Albertazzi, T. Pikuz, P. Mabey, V. Bouffetier, N. Ozaki, T. Vinci, F. Barbato, E. Falize, Y. Inubushi, N. Kamimura, K. Katagiri, M.M.J.E. MakarovS, K. Miyanishi, S. Pikuz, O. Poujade, T.T. SuedaK, Y. Umeda, M. Yabashi, T. Yabuuchi, G. Gregori, R. Kodama, A. Casner, M. Koenig, Micron-scale phenomena observed in a turbulent laser-produced plasma. Nat. Commun. 12, 2679 (2021)

    Article  ADS  Google Scholar 

  • J.R. Ristorcelli, T.T. Clark, Rayleigh-Taylor turbulence: self-similar analysis and direct numerical simulations. J. Fluid Mech. 507, 213 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  • H.F. Robey, Y. Zhou, A.C. Buckingham, P. Keiter, B.A. Remington, R.P. Drake, The time scale for the transition to turbulence in a high Reynolds number, accelerated flow. Phys. Plasmas 10, 614 (2003)

    Article  ADS  Google Scholar 

  • S.G. Saddoughi, S.V. Veeravalli, Local isotropy in turbulent boundary layers at high Reynolds number. J. Fluid Mech. 268, 333 (1994)

    Article  ADS  Google Scholar 

  • O. Schilling, Self-similar Reynolds-averaged mechanical-calar turbulence models for Rayleigh-Taylor, Richtmyer-Meshkov, and Kelvin-Helmholtz instability-induced mixing in the small Atwood number limit. Phys. Fluids 33, 085129 (2021)

    Article  ADS  Google Scholar 

  • J. Schumacher, K.R. Sreenivasan, Colloquium: unusual dynamics of convection in the Sun. Rev. Modern Phys. 92, 041001 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  • L. Sedov, Similarity and Dimensional Methods in Mechanics, 10th edn. (CRC Press, 1993)

    Google Scholar 

  • B.I. Shraiman, E.D. Siggia, Scalar turbulence. Nature 405, 639 (2000)

    Article  ADS  Google Scholar 

  • A.V. Shubnikov, V.A. Koptsik, Symmetry in Science and Art (Plenum Press, 1974). (ISBN 978-0306307591)

    Book  Google Scholar 

  • D.V. Sivukhin, General course of physics (in 5 volumes) [Obshchiy kurs fiziki (v 5 tomakh)] (in Russian). FIZMATLIT (Moscow) (2009) (ISBN 978–5922106733)

  • K.R. Sreenivasan, Fluid turbulence. Rev. Mod. Phys. 71, S383 (1999)

    Article  Google Scholar 

  • K.R. Sreenivasan, Turbulent mixing: a perspective. Proc. Natl. Acad. Sci. u.s.a. 116, 18175 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  • K.R. Sreenivasan, B. Dhurva, Is there scaling in high-Reynolds-number turbulence? Prog. Theor. Phys. Suppl. 130, 103 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  • M. Stanic, R.F. Stellingwerf, J.T. Cassibry, S.I. Abarzhi, Scale coupling in Richtmyer-Meshkov flows induced by strong shocks. Phys. Plasmas 19, 082706 (2012)

    Article  ADS  Google Scholar 

  • K.P. Stanyukovich, Non-Steady Motion of Continuous Media (Oxford Univ. Press, Oxford, 1960)

    Google Scholar 

  • R. Stein, A. Norlund, Realistic solar convection simulations. Solar Phys. 192, 91 (2000)

    Article  ADS  Google Scholar 

  • N.C. Swisher, C. Kuranz, W.D. Arnettt, O. Hurricane, H. Robey, B.A. Remington, S.I. Abarzhi, Rayleigh-Taylor mixing in supernova experiments. Phys. Plasmas 22, 102707 (2015)

    Article  ADS  Google Scholar 

  • H.S. Tavares, L. Biferale, M. Sbragaglia, A.A. Mailybaev, Immiscible Rayleigh-Taylor turbulence using mesoscopic lattice Boltzmann algorithms. Phys. Rev. Fluids 6, 054606 (2021)

    Article  ADS  Google Scholar 

  • G.I. Taylor, The criterion for turbulence in curved pipes. Proc R Soc A 124, 243 (1929)

    ADS  Google Scholar 

  • G.I. Taylor, Statistical theory of turbulence. Proc. Roy Soc. Lond. 151(A), 421 (1935)

    ADS  Google Scholar 

  • G.I. Taylor, The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. Proc. r. Soc. Lond. A 201, 192 (1950a)

    Article  ADS  MathSciNet  Google Scholar 

  • G.I. Taylor, The formation of a blast wave by a very intense explosion. Philos. Trans. R. Soc. A 201, 175 (1950b)

    Google Scholar 

  • G.I. Taylor, The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. Proc. R. Soc. Lond. A 201, 192–196 (1950c)

    Article  ADS  MathSciNet  Google Scholar 

  • The Nobel Prize (2024) https://www.nobelprize.org/

  • B. Thornber et al., Late-time growth rate, mixing, and anisotropy in the multimode narrow band Richtmyer-Meshkov instability: the θ-group collaboration. Phys. Fluids 29, 105107 (2017)

    Article  ADS  Google Scholar 

  • T.C. Underwood, K.T. Loebner, V.A. Miller, M.A. Cappelli, Dynamic formation of stable current-driven plasma jets. Sci. Rep. 9, 2588 (2019)

    Article  ADS  Google Scholar 

  • O.I. Volchenko, I.G. Zhidov, E.E. Meshkov, V.G. Rogachev, Development of localized perturbations at unstable interface of accelerated liquid layer. ZhTF Lett. 15, 47 (1989). (in Russian)

    Google Scholar 

  • K.C. Williams, S.I. Abarzhi, Fluctuations spectra of specific kinetic energy, density and mass flux in Rayleigh-Taylor mixing. Phys. Fluids 34, 12211 (2022)

    Article  Google Scholar 

  • V. Yakhot, D. Donzis, Emergence of multi-scaling in a random-force stirred fluid. Phys. Rev. Lett. 119, 044501 (2017)

    Article  ADS  Google Scholar 

  • Q. Yang, J. Chang, W. Bao, Richtmyer-Meshkov instability induced mixing enhancement in the scramjet combustor with a central strut. Adv. Mech. Eng. 2014, 614189 (2014)

    Article  Google Scholar 

  • D.L. Youngs, Modeling turbulent mixing by Rayleigh-Taylor instability. Physica D 37, 270 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  • D.L. Youngs, The density ratio dependence of self-similar Rayleigh-Taylor mixing. Philos. Trans. R. Soc. A 371, 20120173 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  • V.E. Zakharov, V.S. L’vov, G. Falkovich, Kolmogorov spectra of turbulence (Springer, 1992). (ISBN 9783642500527)

    Book  Google Scholar 

  • M.A. Zaks, A. Nepomnyashchy, Subdiffusive and superdiffusive transport in plane steady viscous flows. Proc. Natl. Acad. Sci. u.s.a. 116, 18245 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  • Y.B. Zeldovich, Y.P. Raizer, Physics of shock waves and high-temperature hydrodynamic phenomena. New York Dover (2002)

  • V.V. Zhakhovsky, A.P. Kryukov, V.Y. Levashov, I.N. Shishkov, S.I. Anisimov, Mass and heat transfer between evaporation and condensation surfaces: atomistic simulation and solution of Boltzmann kinetic equation. Proc. Natl. Acad. Sci. u.s.a. 116, 18209 (2019)

    Article  ADS  Google Scholar 

  • Y. Zhou, A scaling analysis of turbulent flows driven by Rayleigh-Taylor and Richtmyer-Meshkov instabilities. Phys. Fluids 13, 538 (2001)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The support of the University of Western Australia, AUS (project grant 10101047), the Australian Research Council (award LE220100132), and the National Science Foundation, USA (award 1404449) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

SIA: conceptualition; methodology; formal analysis; investigation; data analysis; writing the paper.

Corresponding author

Correspondence to Snezhana I. Abarzhi.

Ethics declarations

Conflict of interest

The corresponding author declares no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abarzhi, S.I. Perspective: group theory analysis and special self-similarity classes in Rayleigh–Taylor and Richtmyer–Meshkov interfacial mixing with variable accelerations. Rev. Mod. Plasma Phys. 8, 15 (2024). https://doi.org/10.1007/s41614-023-00142-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41614-023-00142-3

Keywords

Navigation