Recent progress on turbulence and multi-scale interactions in tokamak plasmas

Abstract

Studies on nonlinear interactions and multi-scale physics are crucial in the physical understanding of the turbulence and transport in the complex nonlinear system of fusion plasmas. This paper reviews recent studies on the turbulence and the related transport. The prominent results are mainly from tokamaks, such as HL-2A, Tore Supra and J-TEXT. First, turbulence behaviors and its role in transport will be introduced. Critical gradients in heat and particle transports have been observed and reproduced by simulations. Turbulence modes and its role in the transport are identified using advanced diagnostics. The measured turbulence transition is consistent with the observation of particle convection reversal and the simulation prediction. In addition, the excitation of an electromagnetic turbulence by either edge self-accumulated or externally seeded impurities has been observed. The impurity-driven turbulence plays an essential role in regulating the impurity transport. Then, the effect of plasma flows on turbulence and multi-scale interactions (micro-turbulence, meso-scale fluctuations, and large scale MHD activities) will be presented. Moreover, a new meso-scale electrostatic fluctuation has been observed. The results indicate that geodesic acoustic modes and magnetic fluctuations can transfer energy through nonlinear synchronization. At last, the enhancement of nonlinear interactions by external actuators will be reported. Theoretical studies in comparisons with experimental findings will be discussed.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

Copyright 2013 APS

Fig. 3

Copyright 2015 IOP

Fig. 4

Reprinted from Zhong (2016a). Copyright 2016 AIP

Fig. 5

Reprinted from Zhong (2016a). Copyright 2016 AIP

Fig. 6

Copyright 2017 IOP

Fig. 7

Copyright 2016 APS

Fig. 8

Copyright 2006 APS

Fig. 9

Copyright 2015 IOP

Fig. 10

Copyright 2010 IOP

Fig. 11

Copyright 2012 APS

Fig. 12

Copyright 2018 APS

Fig. 13

Copyright 2015 APS

Fig. 14

Copyright 2015 APS

Fig. 15

References

  1. C. Angioni et al., Density peaking, anomalous pinch, and collisionality in tokamak plasmas. Phys. Rev. Lett. 90, 205003 (2003)

    ADS  Google Scholar 

  2. H. Arnichand et al., Quasi-coherent modes and electron-driven turbulence. Nucl. Fusion 54, 123017 (2014)

    ADS  Google Scholar 

  3. H. Arnichand et al., Discriminating the trapped electron modes contribution in density fluctuation spectra. Nucl. Fusion 55, 093021 (2015)

    ADS  Google Scholar 

  4. H. Arnichand et al., Identification of trapped electron modes in frequency fluctuation spectra. Plasma Phys. Control. Fusion 58, 014037 (2016)

    ADS  Google Scholar 

  5. L. Bardoczi et al., Modulation of core turbulent density fluctuations by large-scale neoclassical tearing mode islands in the DIII-D tokamak. Phys. Rev. Lett. 116, 215001 (2016)

    ADS  Google Scholar 

  6. H. Biglari, P.H. Diamond, P.W. Terry, Influence of sheared poloidal rotation on edge turbulence. Phys. Fluids B 2, 1 (1990)

    ADS  Google Scholar 

  7. C. Bourdelle et al., A new gyrokinetic quasilinear transport model applied to particle transport in tokamak plasmas. Phys. Plasmas 14, 112501 (2007)

    ADS  Google Scholar 

  8. D.L. Brower et al., Observation of a high-density ion mode in tokamak microturbulence. Phys. Rev. Lett. 59, 48 (1987)

    ADS  Google Scholar 

  9. L. Chen et al., On nonlinear geodesic acoustic modes in tokamak plasmas. Europhys. Lett. 107, 15003 (2014)

    ADS  Google Scholar 

  10. J. Cheng et al., Dynamics of low-intermediate-high-confinement transitions in toroidal plasmas. Phys. Rev. Lett. 110, 265002 (2013)

    ADS  Google Scholar 

  11. M.J. Choi et al., Multiscale interaction between a large scale magnetic island and small scale turbulence. Nucl. Fusion 57, 126058 (2017)

    ADS  Google Scholar 

  12. G.D. Conway et al., Mean and oscillating plasma flows and turbulence interactions across the L-H confinement transition. Phys. Rev. Lett. 106, 065001 (2011)

    ADS  Google Scholar 

  13. G.D. Conway et al., Impact of magnetic perturbation coils on the edge radial electric field and turbulence in ASDEX Upgrade. Plasma Phys. Control. Fusion 57, 014035 (2015)

    MathSciNet  ADS  Google Scholar 

  14. B. Coppi et al., Drift instability due to impurity ions. Phys. Rev. Lett. 17, 377 (1966)

    ADS  Google Scholar 

  15. B. Coppi, C. Spight, Ion-mixing mode and model for density rise in confined plasmas. Phys. Rev. Lett. 41, 551 (1978)

    ADS  Google Scholar 

  16. P.H. Diamond et al., Zonal flows in plasma—a review. Plasma Phys. Control. Fusion 47, R35 (2005)

    Google Scholar 

  17. P.H. Diamond, T.S. Hahm, On the dynamics of turbulent transport near marginal stability. Phys. Plasmas 2, 3640 (1995)

    ADS  Google Scholar 

  18. R.R. Dominguez, Isotope scaling in the drift wave model. Nucl. Fusion 31, 2063 (1991)

    Google Scholar 

  19. R.R. Dominguez, G.M. Staebler, Impurity effects on drift wave stability and impurity transport. Nucl. Fusion 33, 51 (1993)

    ADS  Google Scholar 

  20. J.Q. Dong, W. Horton, Studies of impurity mode and ion temperature gradient mode in toroidal plasmas. Phys. Plasmas 2, 3412 (1995)

    ADS  Google Scholar 

  21. J.Q. Dong, L. Chen, F. Zonca, Study of kinetic shear Alfven modes driven by ion temperature gradient in tokamak plasmas. Nucl. Fusion 39, 1041 (1999)

    ADS  Google Scholar 

  22. J.R. Duff et al., Observation of trapped-electron-mode microturbulence in reversed field pinch plasmas. Phys. Plasmas 25, 010701 (2018)

    ADS  Google Scholar 

  23. T. Estrada et al., Transitions to improved core electron heat confinement triggered by low order rational magnetic surfaces in the stellarator TJ-II. Nucl. Fusion 47, 305 (2007)

    ADS  Google Scholar 

  24. S.P. Eury et al., Exact solutions of the diffusion-convection equation in cylindrical geometry. Phys. Plasmas 12, 102511 (2005)

    MathSciNet  ADS  Google Scholar 

  25. A. Fujisawa et al., Identification of zonal flows in a toroidal plasma. Phys. Rev. Lett. 93, 165002 (2004)

    ADS  Google Scholar 

  26. X. Gao et al., Plasma density behavior in the Hefei tokamak-7. Phys. Plasmas 7, 2933 (2000)

    ADS  Google Scholar 

  27. X. Garbet et al., Turbulent particle transport in magnetized plasmas. Phys. Rev. Lett. 91, 035001 (2003)

    ADS  Google Scholar 

  28. X. Garbet et al., Gyrokinetic simulations of turbulent transport. Nucl. Fusion 50, 043002 (2010)

    ADS  Google Scholar 

  29. R.J. Groebner et al., Experimentally inferred ion thermal diffusivity profiles in the Doublet III tokamak: comparison with neoclassical theory. Nucl. Fusion 26, 543 (1986)

    Google Scholar 

  30. W.X. Guo et al., Impact of impurities on zonal flow driven by trapped electron mode turbulence. Nucl. Fusion 57, 126052 (2017)

    ADS  Google Scholar 

  31. A. Hasegawa, M. Wakatani, Plasma edge turbulence. Phys. Rev. Lett. 50, 682 (1983)

    MATH  ADS  Google Scholar 

  32. A. Hasegawa, M. Wakatani, Self-organization of electrostatic turbulence in a cylindrical plasma. Phys. Rev. Lett. 59, 1581 (1987)

    ADS  Google Scholar 

  33. A. Hasegawa, C.G. Maclennan, Y. Kodama, Nonlinear behavior and turbulence spectra of drift waves and Rossby waves. Phys. Fluids 22, 2122 (1979)

    MathSciNet  MATH  ADS  Google Scholar 

  34. R.J. Hawryluk et al., Overview of TFTR transport studies. Plasma Phys. Control. Fusion 33, 1509 (1991)

    ADS  Google Scholar 

  35. J.C. Hillesheim et al., Observation of a critical gradient threshold for electron temperature fluctuations in the DIII-D tokamak. Phys. Rev. Lett. 110, 045003 (2013)

    ADS  Google Scholar 

  36. G.T. Hoang et al., Experimental determination of critical threshold in electron transport on Tore Supra. Phys. Rev. Lett. 87, 125001 (2001)

    ADS  Google Scholar 

  37. G.T. Hoang et al., Particle pinch with fully noninductive lower hybrid current drive in tore supra. Phys. Rev. Lett. 90, 155002 (2003)

    ADS  Google Scholar 

  38. W. Horton, Drift waves and transport. Rev. Mod. Phys. 71, 735 (1999)

    ADS  Google Scholar 

  39. K. Ida et al., Observation of plasma flow at the magnetic island in the large helical device. Phys. Rev. Lett. 88, 015002 (2001)

    ADS  Google Scholar 

  40. K. Ida et al., Self-regulated oscillation of transport and topology of magnetic islands in toroidal plasmas. Sci. Rep. 5, 16165 (2015)

    ADS  Google Scholar 

  41. K. Ida et al., Hysteresis relation between turbulence and temperature modulation during the heat pulse propagation into a magnetic island in DIII-D. Phys. Rev. Lett. 120, 245001 (2018)

    ADS  Google Scholar 

  42. T. Ido et al., Geodesic acoustic-mode in JFT-2M tokamak plasmas. Plasma Phys. Controll. Fusion 48, S41 (2006)

    Google Scholar 

  43. A. Ishizawa, N. Nakajima, Multi-scale interactions between turbulence and magnetic islands and parity mixture—a review. Nucl. Fusion 49, 055015 (2009)

    ADS  Google Scholar 

  44. K. Itho et al., Excitation of geodesic acoustic mode in toroidal plasmas. Plasma Phys. Control. Fusion 47, 451 (2005)

    ADS  Google Scholar 

  45. S.-I. Itoh et al., Novel turbulence trigger for neoclassical tearings mode in tokamaks. Phys. Rev. Lett. 91, 045003 (2003)

    ADS  Google Scholar 

  46. M. Jiang et al., Localized modulation of turbulence by m/n = 1/1 magnetic islands in the HL-2A tokamak. Nucl. Fusion 59, 066019 (2019)

    ADS  Google Scholar 

  47. M. Jiang et al., Modulation of the trapped electron driven turbulence by m/n = 2/1 tearing mode in the core of HL-2A plasmas. Nucl. Fusion 60, 066006 (2020)

    ADS  Google Scholar 

  48. Y.C. Kim et al., Digital bispectral analysis and its applications to nonlinear wave interactions. IEEE Trans. Plasma Sci. 7, 120 (1979)

    ADS  Google Scholar 

  49. E.J. Kim, P.H. Diamond, Zonal flows and transient dynamics of the L-H transition. Phys. Rev. Lett. 90, 185006 (2003)

    ADS  Google Scholar 

  50. T. Kobayashi et al., Quantification of turbulent driving forces for the geodesic acoustic mode in the JFT-2M tokamak. Phys. Rev. Lett. 120, 045002 (2018)

    ADS  Google Scholar 

  51. A. Krämer-Flecken et al., Long-range correlation properties of quasi-coherent modes at TEXTOR. New J. Phys. 17, 073007 (2015)

    ADS  Google Scholar 

  52. J.-M. Kwon et al., Gyrokinetic simulation study of magnetic island effects on neoclassical physics and micro-instabilities in a realistic KSTAR plasma. Phys. Plasmas 25, 052506 (2018)

    ADS  Google Scholar 

  53. P.T. Lang et al., Impact of a pulsed supersonic deuterium gas jet on the ELM behaviour in ASDEX Upgrade. Plasma Phys. Control. Fusion 47, 1495 (2005)

    ADS  Google Scholar 

  54. H.Y. Lee et al., Edge localized mode characteristics during edge localized mode mitigation by supersonic molecular beam injection in Korea Superconducting Tokamak Advanced Research. Phys. Plasmas 22, 122512 (2015)

    ADS  Google Scholar 

  55. J.A. Lee et al., Observation of electron driven quasi-coherent modes and their connection with core intrinsic rotation in KSTAR ECH and ohmic L-mode plasmas. Phys. Plasmas 25, 022513 (2018)

    ADS  Google Scholar 

  56. J. Li, Y. Kishimoto, Small-scale dynamo action in multi-scale magnetohydrodynamic and micro-turbulence. Phys. Plasmas 19, 030705 (2012)

    ADS  Google Scholar 

  57. Z. Lin et al., Turbulent transport reduction by zonal flows: massively parallel simulations. Science 281, 1835 (1998)

    ADS  Google Scholar 

  58. A.D. Liu et al., Characterizations of low-frequency zonal flow in the edge plasma of the HL-2A tokamak. Phys. Rev. Lett. 103, 095002 (2009)

    ADS  Google Scholar 

  59. S.F. Liu et al., Impurity effects on the ion temperature gradient mode in reversed-field pinch plasmas. Nucl. Fusion 51, 083021 (2011)

    ADS  Google Scholar 

  60. S.F. Liu et al., Gyrokinetic study of impurity mode in reversed-field pinch. Europhys. Lett. 97, 55004 (2012)

    ADS  Google Scholar 

  61. N.J. Lopes Cardozo et al., Tokamak transport studies using perturbation analysis. Plasma Phys. Controll. Fusion 33, 983 (1990)

    ADS  Google Scholar 

  62. N.J. Lopes Cardozo et al., Perturbative transport studies in fusion plasmas. Plasma Phys. Controll. Fusion 37, 799 (1995)

    ADS  Google Scholar 

  63. G.M. Lu et al., Kinetic shear Alfven instability in the presence of impurity ions in tokamak plasmas. Phys. Plasmas 20, 102505 (2013)

    ADS  Google Scholar 

  64. P. Mantica et al., Experimental study of the ion critical-gradient length and stiffness level and the impact of rotation in the JET tokamak. Phys. Rev. Lett. 102, 175002 (2009)

    ADS  Google Scholar 

  65. N. Mattor, Effect of impurity density gradients on low frequency electrostatic fluctuations. Phys. Fluids B 3, 2153 (1991)

    ADS  Google Scholar 

  66. S. Migliuolo, Ion temperature gradient driven impurity modes. Nucl. Fusion 32, 1331 (1992)

    ADS  Google Scholar 

  67. T. Mizuuchi et al., Comparison between supersonic molecular-beam injection and conventional gas-puffing for plasma performance in Heliotron J. J. Nucl. Mater. 415, S443 (2010)

    Google Scholar 

  68. A.B. Navarro et al., Effect of magnetic islands on profiles, flows, turbulence and transport in nonlinear gyrokinetic simulations. Plasma Phys. Control. Fusion 59, 034004 (2017)

    ADS  Google Scholar 

  69. T. Nishizawa et al., Measurements of impurity transport due to drift-wave turbulence in a toroidal plasma. Phys. Rev. Lett. 121, 165002 (2018)

    ADS  Google Scholar 

  70. H. Nordman, J. Weiland, A. Jarmen, Simulation of toroidal drift mode turbulence driven by temperature gradients and electron trapping. Nucl. Fusion 30, 983 (1990)

    Google Scholar 

  71. M.A. Pedrosa, Evidence of long-distance correlation of fluctuations during edge transitions to improved-confinement regimes in the TJ-II stellarator. Phys. Rev. Lett. 100, 215003 (2008)

    ADS  Google Scholar 

  72. B. Pégourié et al., Supersonic gas injection on Tore Supra. J. Nucl. Mater. 313, 539 (2003)

    ADS  Google Scholar 

  73. J.E. Rice et al., Rotation reversal bifurcation and energy confinement saturation in tokamak ohmic L-mode plasmas. Phys. Rev. Lett. 107, 265001 (2011)

    ADS  Google Scholar 

  74. M.N. Rosenbluth, F.L. Hinton, poloidal flow driven by ion-temperature-gradient turbulence in tokamaks. Phys. Rev. Lett. 80, 724 (1998)

    ADS  Google Scholar 

  75. L. Schmitz et al., Role of zonal flow predator-prey oscillations in triggering the transition to H-mode confinement. Phys. Rev. Lett. 108, 155002 (2012)

    ADS  Google Scholar 

  76. Y. Shen et al., Impurity induced kinetic shear Alfven and kinetic ballooning instabilities in tokamak plasmas. Nucl. Fusion 58, 014004 (2018)

    ADS  Google Scholar 

  77. Z.B. Shi et al., A novel multi-channel quadrature Doppler backward scattering reflectometer on the HL-2A tokamak. Rev. Sci. Instrum. 87, 113501 (2016)

    ADS  Google Scholar 

  78. Y. Shimomura, N. Suzuki, M. Sugihara, T. Tsuda, K. Odajima, T. Tsunematsu, Japanese Atomic Energy Research Institute Report, JAERIM- 85-080 (1985)

  79. P.B. Snyder, G.W. Hammett, Electromagnetic effects on plasma microturbulence and transport. Phys. Plasmas 8, 744 (2001)

    ADS  Google Scholar 

  80. H. Takenaga, the JT-60 Team. Particle control study towards burning plasma control in JT-60U. J. Nucl. Mater. 390:8 (2009)

  81. M.Z. Tokar et al., Evidence of suppression of ITG-instability in the radiatively improved mode in TEXTOR-94. Plasma Phys. Control. Fusion 41, L9 (1999)

    Google Scholar 

  82. K.T. Tsang, Dissipative trapped-electron modes in the presence of impurities. Nucl. Fusion 17, 261 (1977)

    ADS  Google Scholar 

  83. V.A. Vershkov et al., Summary of experimental core turbulence characteristics in ohmic and electron cyclotron resonance heated discharges in T-10 tokamak plasmas. Nucl. Fusion 45, S203 (2005)

    Google Scholar 

  84. D. Villegas et al., Experimental electron temperature gradient dependence of heavy impurity transport in fusion devices. Phys. Rev. Lett. 105, 035002 (2010)

    ADS  Google Scholar 

  85. A.A. Ware, Pinch effect oscillations in an unstable tokamak plasma. Phys. Rev. Lett. 25, 916 (1970)

    ADS  Google Scholar 

  86. J. Weiland, A. Jarmen, H. Nordman, Diffusive particle and heat pinch effects in toroidal plasmas. Nucl. Fusion 29, 1810 (1989)

    Google Scholar 

  87. H. Weisen et al., Collisionality and shear dependences of density peaking in JET and extrapolation to ITER. Nucl. Fusion 45, L1 (2005)

    Google Scholar 

  88. N. Winsor, J.L. Johnson, J.M. Dawson, Geodesic acoustic waves in hydromagnetic systems. Phys. Fluids 11, 2448 (1968)

    ADS  Google Scholar 

  89. H. Xia, M.G. Shats, Inverse energy cascade correlated with turbulent-structure generation in toroidal plasma. Phys. Rev. Lett. 91, 155001 (2003)

    ADS  Google Scholar 

  90. W.W. Xiao et al., A method of particle transport study using supersonic molecular beam injection and microwave reflectometry on HL-2A tokamak Rev. Sci. Instrum. 81, 013506 (2010)

    ADS  Google Scholar 

  91. W.W. Xiao et al., Observation of a spontaneous particle-transport barrier in the HL-2A tokamak. Phys. Rev. Lett. 104, 215001 (2010b)

    ADS  Google Scholar 

  92. W.W. Xiao et al., ELM mitigation by supersonic molecular beam injection into the H-mode pedestal in the HL-2A tokamak. Nucl. Fusion 52, 114027 (2012)

    ADS  Google Scholar 

  93. M. Xu et al., Frequency-resolved nonlinear turbulent energy transfer into zonal flows in strongly heated L-mode plasmas in the HL-2A Phys. Rev. Lett. 108, 245001 (2012)

    ADS  Google Scholar 

  94. Z. Yan et al., Observation of the L-H confinement bifurcation triggered by a turbulence-driven shear flow in a tokamak plasma. Phys. Rev. Lett. 112, 125002 (2014)

    ADS  Google Scholar 

  95. L.H. Yao et al., 1993 20th EPS Conf. on Controlled Fusion and Plasma Physics (Lisboa, Portugal), vol. 17C(I) (European Physical Society, Geneva, 1993), p. 303

  96. L.H. Yao et al., Plasma behaviour with molecular beam injection in the HL-1M tokamak. Nucl. Fusion 38, 631 (1998)

    ADS  Google Scholar 

  97. E.S. Yoon, T.S. Hahm, Transport of parallel momentum by toroidal ion temperature gradient instability near marginality. Nucl. Fusion 50, 064006 (2010)

    ADS  Google Scholar 

  98. K.J. Zhao et al., Toroidal symmetry of the geodesic acoustic mode zonal flow in a tokamak plasma. Phys. Rev. Lett. 96, 255004 (2006)

    ADS  Google Scholar 

  99. K.J. Zhao et al., Turbulence and zonal flows in edge plasmas of the HL-2A tokamak. Plasma Phys. Control. Fusion 52, 124008 (2010)

    ADS  Google Scholar 

  100. K.J. Zhao et al., Plasma flows and fluctuations with magnetic islands in the edge plasmas of J-TEXT tokamak. Nucl. Fusion 55, 073022 (2015)

    ADS  Google Scholar 

  101. K.J. Zhao et al., Synchronization of geodesic acoustic modes and magnetic fluctuations in toroidal plasmas. Phys. Rev. Lett. 117, 145002 (2016)

    ADS  Google Scholar 

  102. W.L. Zhong et al., Convective velocity reversal caused by turbulence transition in tokamak plasma. Phys. Rev. Lett. 111, 265001 (2013)

    ADS  Google Scholar 

  103. W.L. Zhong, et al., Enhancement of Nonlinear Regulation Dynamics in SMBI-stimulated L-H transition of HL-2A, 46th EPS Conference on Plasma Physics, Milan, Italy, July 8–12 (2019)

  104. W.L. Zhong et al., Three dimensional measurements of Geodesic Acoustic Mode with correlation Doppler reflectometers. J. Instrum. 10, P10014 (2015a)

    Google Scholar 

  105. W.L. Zhong et al., Spatiotemporal characterization of zonal flows with multi-channel correlation Doppler reflectometers in the HL-2A tokamak. Nucl. Fusion 55, 113005 (2015b)

    ADS  Google Scholar 

  106. W.L. Zhong et al., Experimental observation of turbulence transition and a critical gradient threshold for trapped electron mode in tokamak plasmas. Phys. Plasmas 23, 060702 (2016a)

    Google Scholar 

  107. W.L. Zhong et al., Observation of double impurity critical gradients for electromagnetic turbulence excitation in tokamak plasmas. Phys. Rev. Lett. 117, 045001 (2016b)

    ADS  Google Scholar 

  108. W.L. Zhong et al., Impact of fuelling and impurity on pedestal dynamics and instabilities in the HL-2A tokamak. Plasma Phys. Control. Fusion 59, 014030 (2017)

    ADS  Google Scholar 

  109. W.L. Zhong et al., Impact of impurity mixture gas seeded by supersonic molecular beam injection on edge-localized modes in the HL-2A tokamak. Nucl. Fusion 59, 076033 (2019)

    ADS  Google Scholar 

  110. W.L. Zhong et al., Stimulated effect of SMBI on low-to-high confinement transition of tokamak plasmas. Nucl. Fusion 60, 082002 (2020)

    ADS  Google Scholar 

  111. F. Zonca et al., Existence of discrete modes in an unstable shear Alfvén continuous spectrum. Plasma Phys. Controll. Fusion 40, 2009 (1998)

    ADS  Google Scholar 

  112. X.L. Zou, et al, 2012 Proc. 24th Int. Conf. on Fusion Energy 2012 (San Diego, CA, 2012) (PD/P8-08), http://www-naweb.iaea.org/napc/physics/FEC/FEC2012/index.htm

Download references

Acknowledgements

The authors would like to thank the teams of CNNC/SWIP, CEA/IRFM and HUST for the support of the experiments and simulations. This work was supported by National Key R&D Program of China (No. 2017YFE0301106), and National Natural Science Foundation of China (Nos. 11775070 and 11922503). It was partially supported by Young Elite Scientists Sponsorship Program by CAST (No. 2016QNRC001) and Sichuan Science and Technology Program (No. 2018JY0054), and also partially supported within the framework of the cooperation between the French Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA) and the China National Nuclear Corporation (CNNC).

Author information

Affiliations

Authors

Corresponding author

Correspondence to W. L. Zhong.

Ethics declarations

Conflict of interest

On behalf of all the authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhong, W.L., Zhao, K.J., Zou, X.L. et al. Recent progress on turbulence and multi-scale interactions in tokamak plasmas. Rev. Mod. Plasma Phys. 4, 11 (2020). https://doi.org/10.1007/s41614-020-00047-5

Download citation

Keywords

  • Plasma transport
  • Turbulence
  • Zonal flows
  • Multi-scale interactions