Plasma-digital nexus: plasma nanotechnology for the digital manufacturing age

Abstract

Digital transformation in manufacturing is one of the key megatrends in the development of the global economy and society. Three-dimensional (3D) printing is a transformative digital technology poised to disrupt manufacturing and supply chains across major industries. Here we critically examine relevant insights into current and emerging applications of plasma nanotechnology in printing, including 3D printing. Plasma devices operated at atmospheric pressure coupled with printing processes may help strengthen 3D printing as an emerging fabrication technology that morphs diverse metal powders, polymers, plastics and other materials into digitally designed 3D shapes and patterns. We discuss how plasma applications may help overcome current limitations of 3D printing in various fields, e.g., limitations of sculpting composite materials, lack of mechanical strength and the need for post-processing. Our key focus is on the challenges, opportunities and physical mechanisms of the use of 3D printing in nano-manufacturing, defined as the fabrication of nanoscale building blocks, such as nanoparticles and nanomaterials; their assembly into higher-order (microscale) structures; and the integration of these structures into larger (macro-) scale devices and systems by controlling energy and matter at the nanoscale. Moreover, we discuss the physico-chemical mechanisms that result in highly-conformal deposition of nanostructured materials onto 3D surfaces with microscopic (and possibly nanoscale) control of textures and inter-layer crosslinking, without the need for additional heating. We further highlight the opportunities that arise for plasma nanotechnology to synergize with the emerging digital transformation platforms in surface micro- and nano-structuring using polymers, metals, metallic alloys, and other materials. These new findings in plasma-digital nanoscale fabrication may lead to a new digital manufacturing platform suitable for a number of cutting-edge applications in electronic, sensing and energy devices.

This is a preview of subscription content, log in to check access.

Fig. 1

(Diagram adapted from sculpteo.com (Sculpteo 2017). Image sources: Additive manufacturing—k3syspro.com Augmented reality—Microsoft, Big data—stu.edu (St. Thomas University), Computer numerical control—ZPS America, Smart sensing—SICK.com, Robotics—ABB, Cloud—Tonex.com and Computer aided design/process simulation—ntnu.edu (Norwegian University of Science and Technology) and bobcad.com (BobCADCAM Inc.))

Fig. 2
Fig. 3
Fig. 4
Fig. 5

(Image source: Fraunhofer IST)

Fig. 6

Image Sources (from left to right): Relyon Plasma, Essentium3d and Innophysics

Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Image source https://www.empa.ch/web/coating-competence-center

Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43

References

  1. L. Abhinandan, A. Hollander, Localized deposition of hydrocarbon using plasma activated chemical vapour deposition. Thin Solid Films 457, 241–245 (2004)

    ADS  Google Scholar 

  2. T. Abuzairi, M. Okada, S. Bhattacharjee, M. Nagatsu, Surface conductivity dependent dynamic behaviour of an ultrafine atmospheric pressure plasma jet for microscale surface processing. Appl. Surf. Sci. 390, 489–496 (2016)

    ADS  Google Scholar 

  3. G. Adams, J. Banks, C. Frazier, U. Toodi, M. Lagoudas, in 2018 NASA BIG Idea Challenge: Utilization of Solar Cell Umbrellas to Provide Long-Term Photovoltaic Power on Mars. Texas A&M University (2018)

  4. J. Alaman, R. Alicante, J.I. Pena, C. Sanchez-Somolinos, Inkjet printing of functional materials for optical and photonic applications. Materials 2016, 9 (2016)

    Google Scholar 

  5. R.J. Anthony, K.Y. Cheng, Z.C. Holman, R.J. Holmes, U.R. Kortshagen, An all-gas-phase approach for the fabrication of silicon nanocrystal light-emitting devices. Nano Lett. 12, 2822–2825 (2012)

    ADS  Google Scholar 

  6. I. Bahnini, M. Rivette, A. Rechia, A. Siadat, A. Elmesbahi, Additive manufacturing technology: the status, applications, and prospects. Int. J. Adv. Manuf. Tech. 97, 147–161 (2018)

    Google Scholar 

  7. C.R. Barry, N.Z. Lwin, W. Zheng, H.O. Jacobs, Printing nanoparticle building blocks from the gas phase using nanoxerography. Appl. Phys. Lett. 83, 5527–5529 (2003)

    ADS  Google Scholar 

  8. C.R. Barry, J. Gu, H.O. Jacobs, Charging process and coulomb-force-directed printing of nanoparticles with sub-100-nm lateral resolution. Nano Lett. 5, 2078–2084 (2005)

    ADS  Google Scholar 

  9. T. Belmonte, T. Gries, R.P. Cardoso, G. Arnoult, F. Kosior, G. Henrion, Chemical vapour deposition enhanced by atmospheric microwave plasmas: a large-scale industrial process or the next nanomanufacturing tool. Plasma Sourc. Sci. Technol. 2011, 20 (2011a)

    Google Scholar 

  10. T. Belmonte, G. Henrion, T. Gries, Nonequilibrium atmospheric plasma deposition. J. Therm. Spray Technol. 20, 744–759 (2011b)

    ADS  Google Scholar 

  11. J.P. Boeuf, Y. Lagmich, T. Unfer, T. Callegari, L.C. Pitchford, Electrohydrodynamic force in dielectric barrier discharge plasma actuators. J. Phys. D Appl. Phys. 40, 652–662 (2007)

    ADS  Google Scholar 

  12. A. Boileau, T. Gries, C. Noel, R.P. Cardoso, T. Belmonte, Sub-micro a-C: H patterning of silicon surfaces assisted by atmospheric-pressure plasma-enhanced chemical vapor deposition. J. Phys. D Appl. Phys. 49, 6 (2016)

    Google Scholar 

  13. A. Botman, J.J.L. Mulders, C.W. Hagen, Creating pure nanostructures from electron-beam-induced deposition using purification techniques: a technology perspective. Nanotechnology 20, 6 (2009)

    Google Scholar 

  14. M.I. Boulos, The role of transport phenomena and modeling in the development of thermal plasma technology. Plasma Chem. Plasma 36, 3–28 (2016)

    Google Scholar 

  15. T. Bret, I. Utke, C. Gaillard, P. Hoffmann, Periodic structure formation by focused electron-beam-induced deposition. J. Vac. Sci. Technol. B 22, 2504–2510 (2004)

    Google Scholar 

  16. D. Chakravarty, C.S. Tiwary, C.F. Woellner, S. Radhakrishnan, S. Vinod, S. Ozden, P.A.D. Autreto, S. Bhowmick, S. Asif, S.A. Mani et al., 3D porous graphene by low-temperature plasma welding for bone implants. Adv. Mater. 28, 8959–8967 (2016)

    Google Scholar 

  17. K. Cheng, M.H. Yang, W.W.W. Chiu, C.Y. Huang, J. Chang, T.F. Ying, Y. Yang, Ink-jet printing, self-assembled polyelectrolytes, and electroless plating: low cost fabrication of circuits on a flexible substrate at room temperature. Macromol. Rapid Commun. 26, 247–264 (2005)

    ADS  Google Scholar 

  18. J.W. Choi, E. MacDonald, R. Wicker, Multi-material microstereolithography. Int. J. Adv. Manuf. Tech. 49, 543–551 (2010)

    Google Scholar 

  19. L. Chong, S. Ramakrishna, S. Singh, A review of digital manufacturing-based hybrid additive manufacturing processes. Int. J. Adv. Manuf. Tech. 95, 2281–2300 (2018)

    Google Scholar 

  20. R. Clark, K. Tapily, K.H. Yu, T. Hakamata, S. Consiglio, D. O'Meara, C. Wajda, J. Smith, G. Leusink, Perspective: new process technologies required for future devices and scaling. Appl. Mater. 6, 5 (2018)

    Google Scholar 

  21. A. Clausen, F. Wang, J.S. Jensen, O. Sigmund, J.A. Lewis, Topology optimized architectures with programmable Poisson’s ratio over large deformations. Adv Mater 27(37), 5523–5527 (2015)

    Google Scholar 

  22. V. Colombo, E. Ghedini, P. Sanibondi, Three-dimensional investigation of particle treatment in an RF thermal plasma with reaction chamber. Plasma Sourc. Sci. T 19, 6 (2010)

    Google Scholar 

  23. P. Cools, C. Mota, I. Lorenzo-Moldero, R. Ghobeira, N. De Geyter, L. Moroni, R. Morent, Acrylic acid plasma coated 3D scaffolds for cartilage tissue engineering applications. Sci Rep. UK 8, 8 (2018)

    Google Scholar 

  24. E.A. Corbin, L.J. Millet, J.H. Pikul, C.L. Johnson, J.G. Georgiadis, W.P. King, R. Bashir, Micromechanical properties of hydrogels measured with MEMS resonant sensors. Biomed. Microdev. 15, 311–319 (2013)

    Google Scholar 

  25. C.R. Cunningham, J.M. Flynn, A. Shokrani, V. Dhokia, S.T. Newman, Invited review article: strategies and processes for high quality wire arc additive manufacturing. Addit. Manuf. 22, 672–686 (2018)

    Google Scholar 

  26. R. d'Agostino, P. Favia, C. Oehr, M.R. Wertheimer, Low-temperature plasma processing of materials: past, present, and future. Plasma Process Polym. 2, 7–15 (2005)

    ADS  Google Scholar 

  27. B.J. de Gans, P.C. Duineveld, U.S. Schubert, Inkjet printing of polymers: State of the art and future developments. Adv. Mater. 16, 203–213 (2004)

    Google Scholar 

  28. T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, W. Zhang, Additive manufacturing of metallic components—process, structure and properties. Prog. Mater. Sci. 92, 112–224 (2018)

    Google Scholar 

  29. A. Dey, S. Krishnamurthy, J. Bowen, D. Nordlund, M. Meyyappan, R.P. Gandhiraman, Plasma jet printing and in situ reduction of highly acidic graphene oxide. ACS Nano 12, 5473–5481 (2018)

    Google Scholar 

  30. Essentium, https://3dprinting.com/news/essentiums-fusebox-plasma-3d-printing (2017)

  31. M. Exner, A. Horn, P. Streek, F. Regenfuss, R. Ullmann, Ebert, laser micro sintering—a new method to generate metal and ceramic parts of high resolution with sub-micrometer powder. Proc. Monogr. Eng. Waste 2008, 491–499 (2008)

    Google Scholar 

  32. R.D. Farahani, M. Dube, D. Therriault, Three-dimensional printing of multifunctional nanocomposites: manufacturing techniques and applications. Adv. Mater. 28, 5794–5821 (2016)

    Google Scholar 

  33. S. Felton, M. Tolley, E. Demaine, D. Rus, R. Wood, A method for building self-folding machines. Science 345, 644–646 (2014)

    ADS  Google Scholar 

  34. S.R. Forrest, The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428, 911–918 (2004)

    ADS  Google Scholar 

  35. H. Forster, C. Wolfrum, W. Peukert, Experimental study of metal nanoparticle synthesis by an arc evaporation/condensation process. J. Nanopart Res. 14, 5 (2012)

    Google Scholar 

  36. J.D. Fowlkes, R. Winkler, B.B. Lewis, M.G. Stanford, H. Plank, P.D. Rack, Simulation-guided 3D nanomanufacturing via focused electron beam induced deposition. ACS Nano 10, 6163–6172 (2016)

    Google Scholar 

  37. Fraunhofer Institute for Applied Polymer Research IAP and Thin Films IST, Press release (2018). https://www.fraunhofer.de/content/dam/zv/en/press-media/2018/december/research-news/rn12-2018-IST-precisely-fitting-bone-implants-from-the-printer.pdf

  38. K. Fricke, H. Steffen, T. von Woedtke, K. Schroder, K.D. Weltmann, High rate etching of polymers by means of an atmospheric pressure plasma jet. Plasma Process Polym. 8, 51–58 (2011)

    Google Scholar 

  39. A. Frutiger, J.T. Muth, D.M. Vogt, Y. Mengüç, A. Campo, A.D. Valentine, C.J. Walsh, J.A. Lewis, Capacitive soft strain sensors via multicore-shell fiber printing. Adv Mater 27(15), 2440–2446 (2015)

    Google Scholar 

  40. P. Galliker, J. Schneider, H. Eghlidi, S. Kress, V. Sandoghdar, D. Poulikakos, Direct printing of nanostructures by electrostatic autofocussing of ink nanodroplets. Nat. Commun. 3, 5 (2012)

    Google Scholar 

  41. R.P. Gandhiraman, E. Singh, D.C. Diaz-Cartagena, D. Nordlund, J. Koehne, M. Meyyappan, Plasma jet printing for flexible substrates. Appl. Phys. Lett. 108, 8 (2016)

    Google Scholar 

  42. M. Gavagnin, H.D. Wanzenboeck, S. Wachter, M.M. Shawrav, A. Persson, K. Gunnarsson, P. Svedlindh, M. Stoger-Pollach, E. Bertagnolli, Free-standing magnetic nanopillars for 3D nanomagnet logic. ACS Appl. Mater. Inter. 6, 20254–20260 (2014)

    Google Scholar 

  43. H.C. George, T.A. Orlova, A.O. Orlov, G.L. Snider, Novel method for fabrication of nanoscale single-electron transistors: electron beam induced deposition of Pt and atomic layer deposition of tunnel barriers. J. Vac. Sci. Technol. B 29, 5 (2011)

    Google Scholar 

  44. M.K. Ghatkesar, H.H.P. Garza, F. Heuck, U. Staufer, Scanning probe microscope-based fluid dispensing. Micromach. Basel 5, 954–1001 (2014)

    Google Scholar 

  45. S.L. Girshick, Aerosol processing for nanomanufacturing. J. Nanopart Res. 10, 935–945 (2008)

    ADS  Google Scholar 

  46. A.S. Gladman, E.A. Matsumoto, R.G. Nuzzo, L. Mahadevan, J.A. Lewis, Biomimetic 4D printing. Nat. Mater. 15, 413 (2016)

    ADS  Google Scholar 

  47. N.Y.M. Gonzalez, M. El Morsli, P. Proulx, Production of nanoparticles in thermal plasmas: a model including evaporation nucleation, condensation, and fractal aggregation. J. Therm. Spray Technol. 17, 533–550 (2008)

    ADS  Google Scholar 

  48. P. Grenson, O. Leon, P. Reulet, B. Aupoix, Investigation of an impinging heated jet for a small nozzle-to-plate distance and high Reynolds number: an extensive experimental approach. Int. J. Heat Mass Trans. 102, 801–815 (2016)

    Google Scholar 

  49. J.Y. Guo, X.B. Fan, R. Dolbec, S.W. Xue, J. Jurewicz, M. Boulos, Development of nanopowder synthesis using induction plasma. Plasma Sci. Technol. 12, 188–199 (2010)

    ADS  Google Scholar 

  50. D.J. Guo, R. Kometani, S. Warisawa, S. Ishihara, Growth of ultra-long free-space-nanowire by the real-time feedback control of the scanning speed on focused-ion-beam chemical vapor deposition. J. Vac. Sci. Technol. B 31, 5 (2013)

    Google Scholar 

  51. J. Hafiz, X. Wang, R. Mukherjee, W. Mook, C.R. Perrey, J. Deneen, J.V.R. Heberlein, P.H. McMurry, W.W. Gerberich, C.B. Carter et al., Hypersonic plasma particle deposition of Si–Ti–N nanostructured coatings. Surf. Coat. Tech. 188, 364–370 (2004)

    Google Scholar 

  52. J. Hafiz, R. Mukherjee, X. Wang, J.V.R. Heberlein, P.H. McMurry, S.L. Girshick, Analysis of nanostructured coatings synthesized by ballistic impaction of nanoparticles. Thin Solid Films 515, 1147–1151 (2006a)

    ADS  Google Scholar 

  53. J. Hafiz, R. Mukherjee, X. Wang, P.H. McMurry, J.V.R. Heberlein, S.L. Girshick, Hypersonic plasma particle deposition—a hybrid between plasma spraying and vapor deposition. J. Therm. Spray Technol. 15, 822–826 (2006b)

    ADS  Google Scholar 

  54. H. Hartl, Y.R. Guo, K. Ostrikov, Y.B. Xian, J. Zheng, X.G. Li, K.E. Fairfull-Smith, J. MacLeod, Film formation from plasma-enabled surface-catalyzed dehalogenative coupling of a small organic molecule. RSC Adv. 9, 2848–2856 (2019)

    Google Scholar 

  55. D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann, Additive manufacturing of metals. Acta Mater. 117, 371–392 (2016)

    ADS  Google Scholar 

  56. L. Hirt, A. Reiser, R. Spolenak, T. Zambelli, Additive manufacturing of metal structures at the micrometer scale. Adv. Mater. 29, 5 (2017)

    Google Scholar 

  57. A. Hollander, L. Abhinandan, Localized deposition by mu-jet-CVD. Surf. Coat. Tech. 174, 1175–1177 (2003)

    Google Scholar 

  58. J. Hong, S. Yick, E. Chow, A. Murdock, J. Fang, D.H. Seo, A. Wolff, Z. Han, T. van der Laan, A. Bendavid et al., Direct plasma printing of nano-gold from an inorganic precursor. J. Mater. Chem. C 7, 8 (2019)

    Google Scholar 

  59. J.L. Hu, H.P. Meng, G.Q. Li, S.I. Ibekwe, A review of stimuli-responsive polymers for smart textile applications. Smart Mater. Struct. 21, 5 (2012)

    Google Scholar 

  60. K.I. Hunter, J.T. Held, K.A. Mkhoyan, U.R. Kortshagen, Nonthermal plasma synthesis of core/shell quantum dots: strained Ge/Si nanocrystals. ACS Appl. Mater. Inter. 9, 8263–8270 (2017)

    Google Scholar 

  61. Innophysics, https://www.innophysics.nl/index.php/projects/plasmaprint-ald (2019)

  62. E. Jager, J. Schmidt, A. Pfuch, S. Spange, O. Beier, N. Jager, O. Jantschner, R. Daniel, C. Mitterer, Antibacterial silicon oxide thin films doped with zinc and copper grown by atmospheric pressure plasma chemical vapor deposition. Nanomaterials 9, 5 (2019)

    Google Scholar 

  63. P.I. John, Plasma Sciences and the Creation of Wealth (Tata McGraw Hill Education, New York City, 2005)

    Google Scholar 

  64. K.S. Joshy, S. Snigdha, S. Thomas, Plasma Modified Polymeric Materials for Scaffolding of Bone Tissue Engineering (Elsevier, Amsterdam, 2019)

    Google Scholar 

  65. K.S. Kim, T.H. Kim, Nanofabrication by thermal plasma jets: From nanoparticles to low-dimensional nanomaterials. J. Appl. Phys. 125, 5 (2019)

    Google Scholar 

  66. D.B. Kolesky, R.L. Truby, A. Sydney Gladman, T.A. Busbee, K.A. Homan, J.A. Lewis, 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater 26(19), 3124–3130 (2014)

    Google Scholar 

  67. H.W.P. Koops, O.E. Hoinkis, M.E.W. Honsberg, R. Schmidt, R. Blum, G. Bottger, A. Kuligk, C. Liguda, M. Eich, Two-dimensional photonic crystals produced by additive nanolithography with electron beam-induced deposition act as filters in the infrared. Microelectron Eng. 57–8, 995–1001 (2001)

    Google Scholar 

  68. U. Kortshagen, U. Bhandarkar, Modeling of particulate coagulation in low pressure plasmas. Phys. Rev. E 60, 887–898 (1999)

    ADS  Google Scholar 

  69. U.R. Kortshagen, R.M. Sankaran, R.N. Pereira, S.L. Girshick, J.J. Wu, E.S. Aydil, Nonthermal plasma synthesis of nanocrystals: fundamental principles. Mater. Appl. Chem. Rev. 116, 11061–11127 (2016)

    Google Scholar 

  70. F. Kotz, K. Arnold, W. Bauer, D. Schild, N. Keller, K. Sachsenheimer, T.M. Nargang, C. Richter, D. Helmer, B.E. Rapp, Three-dimensional printing of transparent fused silica glass. Nature 544, 337 (2017)

    ADS  Google Scholar 

  71. N.J. Kramer, R.J. Anthony, M. Mamunuru, E.S. Aydil, U.R. Kortshagen, Plasma-induced crystallization of silicon nanoparticles. J. Phys. D Appl. Phys. 47, 5 (2014)

  72. N.J. Kramer, E.S. Aydil, U.R. Kortshagen, Requirements for plasma synthesis of nanocrystals at atmospheric pressures. J. Phys. D Appl. Phys. 48, 7 (2015)

    Google Scholar 

  73. A. Kumar, S. Kang, C. Larriba-Andaluz, H. Ouyang, C.J. Hogan, R.M. Sankaran, Ligand-free Ni nanocluster formation at atmospheric pressure via rapid quenching in a microplasma process. Nanotechnology 25, 5 (2014)

    Google Scholar 

  74. S. Kyung, Y. Lee, C. Kim, J. Lee, G. Yeom, Deposition of carbon nanotubes by capillary-type atmospheric pressure PECVD. Thin Solid Films 506, 268–273 (2006)

    ADS  Google Scholar 

  75. A. Lazea-Stoyanova, A. Vlad, A.M. Vlaicu, V.S. Teodorescu, G. Dinescu, Synthesis of copper particles by non-thermal atmospheric pressure plasma jet. Plasma Process Polym. 12, 705–709 (2015)

    Google Scholar 

  76. H.H. Lee, K.S. Chou, K.C. Huang, Inkjet printing of nanosized silver colloids. Nanotechnology 16, 2436–2441 (2005)

    ADS  Google Scholar 

  77. S.W. Lee, D. Liang, X.P.A. Gao, R.M. Sankaran, Direct writing of metal nanoparticles by localized plasma electrochemical reduction of metal cations in polymer films. Adv. Funct. Mater. 21, 2155–2161 (2011)

    Google Scholar 

  78. B.B. Lewis, M.G. Stanford, J.D. Fowlkes, K. Lester, H. Plank, P.D. Rack, Electron-stimulated purification of platinum nanostructures grown via focused electron beam induced deposition. Beilstein J Nanotech. 6, 907–918 (2015)

    Google Scholar 

  79. M.M. Ling, Z.N. Bao, Thin film deposition, patterning, and printing in organic thin film transistors. Chem Mater. 16, 4824–4840 (2004)

    Google Scholar 

  80. Y. Liu, J.K. Boyles, J. Genzer, M.D. Dickey, Self-folding of polymer sheets using local light absorption. Soft Matter 8, 1764–1769 (2012)

    ADS  Google Scholar 

  81. M.F. Mabrook, C. Pearson, A.S. Jombert, D.A. Zeze, M.C. Petty, The morphology, electrical conductivity and vapour sensing ability of inkjet-printed thin films of single-wall carbon nanotubes. Carbon 47, 752–757 (2009)

    Google Scholar 

  82. K. Mackie, M. Gordon, Microplasma-based deposition of functional nanomaterials for energy storage applications. Abstr. Pap. Am. Chem. S 253, 8 (2017)

    Google Scholar 

  83. K.E. Mackie, A.C. Pebley, M.M. Butala, J.P. Zhang, G.D. Stucky, M.J. Gordon, Microplasmas for direct, substrate-independent deposition of nanostructured metal oxides. Appl. Phys. Lett. 109, 8 (2016)

    Google Scholar 

  84. S. Magdassi, A. Bassa, Y. Vinetsky, A. Kamyshny, Silver nanoparticles as pigments for water-based ink-jet inks. Chem. Mater. 15, 2208–2217 (2003)

    Google Scholar 

  85. P. Maguire, D. Rutherford, M. Macias-Montero, C. Mahony, C. Kelsey, M. Tweedie, F. Perez-Martin, H. McQuaid, D. Diver, D. Mariottit, Continuous in-flight synthesis for on-demand delivery of ligand-free colloidal gold nanoparticles. Nano Lett. 17, 1336–1343 (2017)

    ADS  Google Scholar 

  86. R.M. Mahamood, Laser Metal Deposition Process of Metals, Alloys, and Composite Materials (Springer, Berlin, 2018)

    Google Scholar 

  87. A. Mameli, Y.H. Kuang, M. Aghaee, C.K. Ande, B. Karasulu, M. Creatore, A.J.M. Mackus, W.M.M. Kessels, F. Roozeboornt, Area-selective atomic layer deposition of In2O3: H Using a mu-plasma printer for local area activation. Chem. Mater. 29, 921–925 (2017)

    Google Scholar 

  88. L. Mangolini, U. Kortshagen, Plasma-assisted synthesis of silicon nanocrystal inks. Adv. Mater. 19, 2513 (2007)

    Google Scholar 

  89. L. Mangolini, E. Thimsen, U. Kortshagen, High-yield plasma synthesis of luminescent silicon nanocrystals. Nano Lett. 5, 655–659 (2005)

    ADS  Google Scholar 

  90. Y.Q. Mao, K. Yu, M.S. Isakov, J.T. Wu, M.L. Dunn, H.J. Qi, Sequential self-folding structures by 3D printed digital shape memory polymers. Sci. Rep. UK 5, 8 (2015)

    Google Scholar 

  91. T. Matsoukas, M. Russell, Particle charging in low-pressure plasmas. J. Appl. Phys. 77, 4285–4292 (1995)

    ADS  Google Scholar 

  92. R. Maurau, N.D. Boscher, S. Olivier, S. Bulou, T. Belmonte, J. Dutroncy, T. Sindzingre, P. Choquet, Atmospheric pressure, low temperature deposition of photocatalytic TiOx thin films with a blown arc discharge. Surf. Coat. Tech. 232, 159–165 (2013)

    Google Scholar 

  93. D. Merche, N. Vandencasteele, F. Reniers, Atmospheric plasmas for thin film deposition: a critical review. Thin Solid Films 520, 4219–4236 (2012)

    ADS  Google Scholar 

  94. I. Michelakaki, N. Boukos, D.A. Dragatogiannis, S. Stathopoulos, C.A. Charitidis, D. Tsoukalas, Synthesis of hafnium nanoparticles and hafnium nanoparticle films by gas condensation and energetic deposition. Beilstein J. Nanotech. 9, 1868–1880 (2018)

    Google Scholar 

  95. S.Y. Min, T.S. Kim, B.J. Kim, H. Cho, Y.Y. Noh, H. Yang, J.H. Cho, T.W. Lee, Large-scale organic nanowire lithography and electronics. Nat. Commun. 4, 8 (2013)

    Google Scholar 

  96. S. Mohr, O. Khan, 3D printing and its disruptive impacts on supply chains of the future. Technol. Innov. Manag. 5, 20–25 (2015)

    Google Scholar 

  97. I. Motrescu, M. Nagatsu, Nanocapillary atmospheric pressure plasma jet: a tool for ultrafine maskless surface modification at atmospheric pressure. ACS Appl. Mater. Inter. 8, 12528–12533 (2016)

    Google Scholar 

  98. K. Murakami, M. Takai, Nano electron source fabricated by beam-induced deposition and its unique feature. Microelectron Eng. 132, 74–82 (2015)

    Google Scholar 

  99. L.E. Murr, S.M. Gaytan, D.A. Ramirez, E. Martinez, J. Hernandez, K.N. Amato, P.W. Shindo, F.R. Medina, R.B. Wicker, Metal fabrication by additive manufacturing using laser and electron beam melting technologies. J. Mater. Sci. Technol. 28, 1–14 (2012)

    Google Scholar 

  100. T.J. Ober, D. Foresti, J.A. Lewis, Active mixing of complex fluids at the microscale. Proc Natl Acad Sci 112(40), 12293–12298 (2015)

    ADS  Google Scholar 

  101. S. Ohno, M. Uda, Preparation for ultrafine particles of Fe–Ni Fe–Cu and Fe–Si alloys by hydrogen plasma-metal reaction. J. Jpn. I Method 53, 946–952 (1989)

    Google Scholar 

  102. R. Parashkov, E. Becker, T. Riedl, H.H. Johannes, W. Kowalsky, Large area electronics using printing, methods. Proc. IEEE 93, 1321–1329 (2005)

    Google Scholar 

  103. J.-U. Park, M. Hardy, S. J. Kang, K. Barton, K. Adair, D.K. Mukhopadhyay, C. Y. Lee, M.S. Strano, A.G. Alleyne, J.G. Georgiadis et al., High-resolution electrohydrodynamic jet printing. Nat. Mater. 6, 782 (2007)

  104. S. Park, U. Cvelbar, W. Choe, S.Y. Moon, The creation of electric wind due to the electrohydrodynamic force. Nat. Commun. 9, 7 (2018)

    Google Scholar 

  105. J. Perelaer, R. Jani, M. Grouchko, A. Kamyshny, S. Magdassi, U.S. Schubert, Plasma and microwave flash sintering of a tailored silver nanoparticle ink, yielding 60% Bulk conductivity on cost-effective polymer foils. Adv. Mater. 24, 3993–3998 (2012)

    Google Scholar 

  106. H. Plank, C. Gspan, M. Dienstleder, G. Kothleitner, F. Hofer, The influence of beam defocus on volume growth rates for electron beam induced platinum deposition. Nanotechnology 19, 8 (2008)

    Google Scholar 

  107. Relyon plasma, https://www.relyon-plasma.com/maximum-surface-quality-in-3d-printing (2019)

  108. P.D. Rack, J.D. Fowlkes, S.J. Randolph, In situ probing of the growth and morphology in electron-beam-induced deposited nanostructures. Nanotechnology 18, 8 (2007)

    Google Scholar 

  109. C.L. Randall, E. Gultepe, D.H. Gracias, Self-folding devices and materials for biomedical applications. Trends Biotechnol. 30, 138–146 (2012)

    Google Scholar 

  110. C. Richmonds, R.M. Sankaran, Plasma-liquid electrochemistry: rapid synthesis of colloidal metal nanoparticles by microplasma reduction of aqueous cations. Appl. Phys. Lett. 93, 8 (2008)

    Google Scholar 

  111. C. Richmonds, M. Witzke, B. Bartling, S.W. Lee, J. Wainright, C.C. Liu, R.M. Sankaran, Electron-transfer reactions at the plasma-liquid interface. J. Am. Chem. Soc. 133, 17582–17585 (2011)

    Google Scholar 

  112. P. Richner, S.J.P. Kress, D.J. Norris, D. Poulikakos, Charge effects and nanoparticle pattern formation in electrohydrodynamic nanodrip printing of colloids. Nanoscale 8, 6028–6034 (2016)

    ADS  Google Scholar 

  113. S. Sanaur, A. Whalley, B. Alameddine, M. Carnes, C. Nuckolls, Jet-printed electrodes and semiconducting oligomers for elaboration of organic thin-film transistors. Org. Electron. 7, 423–427 (2006)

    Google Scholar 

  114. V. Satulu, M.D. Ionita, S. Vizireanu, B. Mitu, G. Dinescu, Plasma processing with fluorine chemistry for modification of surfaces wettability. Molecules 21, 8 (2016)

    Google Scholar 

  115. J. Schneider, P. Rohner, D. Thureja, M. Schmid, P. Galliker, D. Poulikakos, Electrohydrodynamic nanodrip printing of high aspect ratio metal grid transparent electrodes. Adv. Funct. Mater. 26, 833–840 (2016)

    Google Scholar 

  116. M. Schwentenwein, J. Homa, Additive manufacturing of dense alumina ceramics. Int. J. Appl. Ceram. Tech. 12, 1–7 (2015)

    Google Scholar 

  117. Sculpteo, Digital manufacturing. https://www.industryweek.com/technology-and-iiot/article/21995642/digital-manufacturing-the-factory-of-the-future-is-here-today (2017)

  118. C.W. Sele, T. von Werne, R.H. Friend, H. Sirringhaus, Lithography-free, self-aligned inkjet printing with sub-hundred-nanometer resolution. Adv Mater. 17, 997 (2005)

    Google Scholar 

  119. J.H. Seo, B.G. Hong, Thermal plasma synthesis of nano-sized powders. Nucl. Eng. Technol. 44, 9–20 (2012)

    Google Scholar 

  120. S.K. Seol, D. Kim, S. Lee, J.H. Kim, W.S. Chang, J.T. Kim, Electrodeposition-based 3D printing of metallic microarchitectures with controlled internal structures. Small 11, 3896–3902 (2015)

    Google Scholar 

  121. M. Shigeta, A.B. Murphy, Thermal plasmas for nanofabrication. J. Phys. D Appl. Phys. 44, 8 (2011)

    Google Scholar 

  122. Y. Shimizu, Diameter control of gold nanoparticles synthesized in gas phase using atmospheric-pressure H-2/Ar plasma jet and gold wire as the nanoparticle source: control by varying the H-2/Ar mixture ratio. AIP Adv. 7, 8 (2017)

    Google Scholar 

  123. Y. Shimizu, T. Sasaki, T. Ito, K. Terashima, N. Koshizaki, Fabrication of spherical carbon via UHF inductively coupled microplasma CVD. J. Phys. D Appl. Phys. 36, 2940–2944 (2003)

    ADS  Google Scholar 

  124. Y. Shimizu, K. Kawaguchi, T. Sasaki, N. Koshizaki, Generation of room-temperature atmospheric H-2/Ar microplasma jet driven with pulse-modulated ultrahigh frequency and its application to gold nanoparticle preparation. Appl. Phys. Lett. 94, 8 (2009)

    Google Scholar 

  125. K. Silmy, A. Hollander, A. Dillmann, J. Thomel, Micro-jet plasma CVD with HMDSO/O-2. Surf. Coat. Tech. 200, 368–371 (2005)

    Google Scholar 

  126. H. Sirringhaus, T. Kawase, R.H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, E.P. Woo, High-resolution inkjet printing of all-polymer transistor circuits. Science 290, 2123–2126 (2000)

    ADS  Google Scholar 

  127. M.A. Skylar-Scott, S. Gunasekaran, J.A. Lewis, Laser-assisted direct ink writing of planar and 3D metal architectures. Proc. Natl. Acad. Sci. USA 113, 6137–6142 (2016)

    ADS  Google Scholar 

  128. M.G. Stanford, B.B. Lewis, J.H. Noh, J.D. Fowlkes, P.D. Rack, Inert gas enhanced laser-assisted purification of platinum electron-beam-induced deposits. ACS Appl. Mater. Inter. 7, 19579–19588 (2015)

    Google Scholar 

  129. A.R. Studart, Additive manufacturing of biologically-inspired materials. Chem. Soc. Rev. 45, 359–376 (2016)

    Google Scholar 

  130. N. Stutzmann, R.H. Friend, H. Sirringhaus, Self-aligned, vertical-channel, polymer field-effect transistors. Science 299, 1881–1884 (2003)

    ADS  Google Scholar 

  131. Y. Sui, Y. Dai, C.C. Liu, R.M. Sankaran, C.A. ZormanSui, A new class of low-temperature plasma-activated, inorganic salt-based particle-free inks for inkjet printing metals. Adv. Mater. Technol. 2019, 1900119 (2019)

    Google Scholar 

  132. J.B. Szczech, C.M. Megaridis, D.R. Gamota, J. Zhang, Fine-line conductor manufacturing using drop-on-demand PZT printing technology. IEEE Tech. Electron Pack. 25, 26–33 (2002)

    Google Scholar 

  133. T. Takai, H. Nakao, F. Iwata, Three-dimensional microfabrication using local electrophoresis deposition and a laser trapping technique. Opt. Express 22, 28109–28117 (2014)

    ADS  Google Scholar 

  134. V. Tasco, M. Esposito, F. Todisco, A. Benedetti, M. Cuscuna, D. Sanvitto, A. Passaseo, Three-dimensional nanohelices for chiral photonics. Appl. Phys. A Mater. 122, 8 (2016)

    Google Scholar 

  135. Tekna, http://www.tekna.com/news/tekna-announces-the-market-launch-of-new-spherical-aluminum-alloy-powders-for-additive-manufacturing (2018)

  136. M. Thomas, J. Borris, A. Dohse, M. Eichler, A. Hinze, K. Lachmann, K. Nagel, and C. P. Klages, Plasma printing and related techniques—patterning of surfaces using microplasmas at atmospheric pressure. Plasma Process Polym. 9, 1086–1103 (2012)

    Google Scholar 

  137. M. Thomson, J.L. Hodgkinson, D.W. Sheel, Control of zinc oxide surface structure using combined atmospheric pressure-based CVD growth and plasma etching. Surf. Coat. Tech. 230, 190–195 (2013)

    Google Scholar 

  138. S. Tibbits, 4d printing: multi-material shape change. Archit. Design 84, 116–121 (2014)

    Google Scholar 

  139. R.L. Truby, J.A. Lewis, Printing soft matter in three dimensions. Nature 540, 371–378 (2016)

    ADS  Google Scholar 

  140. F. Ullmann, J. Bielecki, Synthesis in the biphenyl series (I Announcement). Ber. Dtsch Chem. Ges. 34, 2174–2185 (1901)

  141. M. Vaezi, H. Seitz, S.F. Yang, A review on 3D micro-additive manufacturing technologies. Int. J. Adv. Manuf. Tech. 67, 1721–1754 (2013)

    Google Scholar 

  142. R. van Hout, V. Rinsky, Y.G. Grobman, Experimental study of a round jet impinging on a flat surface: flow field and vortex characteristics in the wall jet. Int. J. Heat Fluid. 70, 41–58 (2018)

    Google Scholar 

  143. P. Verhoeven, A. Stevens, J. P. Schalken, M. Soltani, A. Mäntysalo, Digital printing with micro plasmas and its effects on surface wettability. 28th international conference on surface modification technologies, 2014 Tampre. Conference proceedings (2014), pp. 421–431

  144. R.O.F. Verkuijlen, M.H.A. van Dongen, A.A.E. Stevens, J. van Geldrop, J.P.C. Bernards, Surface modification of polycarbonate and polyethylene naphtalate foils by UV-ozone treatment and mu Plasma printing. Appl. Surf. Sci. 290, 381–387 (2014)

    ADS  Google Scholar 

  145. A. Vyatskikh, S. Delalande, A. Kudo, X. Zhang, C.M. Portela, J.R. Greer, Additive manufacturing of 3D nano-architected metals. Nat Commun. 2018, 9 (2018)

    Google Scholar 

  146. X.L. Wang, A. Gidwani, S.L. Girshick, P.H. McMurry, Aerodynamic focusing of nanoparticles: II Numerical simulation of particle motion through aerodynamic lenses. Aerosol. Sci. Tech. 39, 624–636 (2005a)

    ADS  Google Scholar 

  147. X.L. Wang, F.E. Kruis, P.H. McMurry, Aerodynamic focusing of nanoparticles: I guidelines for designing aerodynamic lenses for nanoparticles. Aerosol. Sci. Tech. 39, 611–623 (2005b)

    ADS  Google Scholar 

  148. J.Z. Wang, J. Gu, F. Zenhausem, H. Sirringhaus, Low-cost fabrication of submicron all polymer field effect transistors. Appl. Phys. Lett. 88, 6 (2006)

    Google Scholar 

  149. D.Z. Wang, W. Zha, L. Feng, Q. Ma, X.M. Liu, N. Yang, Z. Xu, X.J. Zhao, J.S. Liang, T.Q. Ren et al., Electrohydrodynamic jet printing and a preliminary electrochemistry test of graphene micro-scale electrodes. J. Micromech. Microeng. 26, 6 (2016a)

    Google Scholar 

  150. M. Wang, P. Favi, X.Q. Cheng, N.H. Golshan, K.S. Ziemer, M. Keidar, T.J. Webster, Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration. Acta Biomater. 46, 256–265 (2016b)

    Google Scholar 

  151. T. Wei, J. Ruan, Z.J. Fan, G.H. Luo, F. Wei, Preparation of a carbon nanotube film by ink-jet printing. Carbon 45, 2712–2716 (2007)

    Google Scholar 

  152. K.D. Weltmann, J.F. Kolb, M. Holub, D. Uhrlandt, M. Simek, K. Ostrikov, S. Hamaguchi, U. Cvelbar, M. Cernak, B. Locke et al., The future for plasma science and technology. Plasma Process Polym. 2019, 16 (2019)

    Google Scholar 

  153. J. Wienand, A. Riedelsheimer, B. Weigand, Numerical study of a turbulent impinging jet for different jet-to-plate distances using two-equation turbulence models. Eur. J. Mech. B Fluid 61, 210–217 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  154. J. Xu, C. Zhong, C. Fu, Novel method for printing high-quality metal wires. SPIE Newsroom (2007)

  155. Y.G. Yao, Z.N. Huang, P.F. Xie, S.D. Lacey, R.J. Jacob, H. Xie, F.J. Chen, A.M. Nie, T.C. Pu, M. Rehwoldt et al., Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science 359, 1489–1494 (2018)

    ADS  Google Scholar 

  156. S. Yick, Z.J. Han, K. Ostrikov, Atmospheric microplasma-functionalized 3D microfluidic strips within dense carbon nanotube arrays confine Au nanodots for SERS sensing. Chem. Commun. 49, 2861–2863 (2013)

    Google Scholar 

  157. Z. Yin, Y. Huang, Y. Duan, H. Zhang, Electrohydrodynamic Direct-writing for Flexible Electronic Manufacturing (Springer, Berlin, 2018)

    Google Scholar 

  158. R.M. Young, E. Pfender, generation and behavior of fine particles in thermal plasmas—a review. Plasma Chem. Plasma P 5, 1–37 (1985)

  159. I. Zein, D.W. Hutmacher, K.C. Tan, S.H. Teoh, Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials 23, 1169–1185 (2002)

    Google Scholar 

  160. R. Zimmermann, A. Pfuch, K. Horn, J. Weisser, A. Heft, M. Roder, R. Linke, M. Schnabelrauch, A. Schimanski, An approach to create silver containing antibacterial coatings by use of atmospheric pressure plasma chemical vapour deposition (APCVD) and combustion chemical vapour deposition (CCVD) in an economic way. Plasma Process Polym. 8, 295–304 (2011)

    Google Scholar 

Download references

Acknowledgements

We sincerely acknowledge the efforts of all researchers who have worked in any of the relevant areas and apologize if any relevant works were not included due to the specific focus and length limits of this article. This work was performed under the CSIRO-QUT Joint Laboratories Agreement. J. H. and B. A. gratefully acknowledge funding by the CSIRO Research Plus Postdoctoral Fellowship scheme. P. J. C. and K. O. thank the Australian Research Council for partial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to K. Ostrikov.

Ethics declarations

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hong, J., Murphy, A.B., Ashford, B. et al. Plasma-digital nexus: plasma nanotechnology for the digital manufacturing age. Rev. Mod. Plasma Phys. 4, 1 (2020). https://doi.org/10.1007/s41614-019-0039-8

Download citation

Keywords

  • Plasma printing
  • Plasma nanotechnology
  • Additive manufacturing
  • Digital technologies