Theoretical models for unstable IAWs and nonlinear structures in the upper ionosphere

Abstract

Physical mechanisms are discussed for the excitation of ion-acoustic waves (IAWs) by field-aligned shear flow of ions and parallel current produced by electrons in the upper ionospheric oxygen hydrogen plasma within auroral latitudes. Theoretical models are presented for the formation of solitary structures by nonlinear IAWs. It is pointed out that the small concentration of hydrogen ions in the oxygen plasma should not be ignored, because it plays important role in the linear instability of IAWs and in determining the size of the nonlinear electrostatic structures. The growth rates of IAWs and size of nonlinear structures vary with altitude, because both depend upon the density ratio of oxygen-to-hydrogen ions along with other parameters. Current-driven electrostatic ion-acoustic waves are studied using kinetic theory which shows that parallel current produces these waves if the concentration of protons is very small about 4% or lesser in the presence of field-aligned shear flow of both kind of ions. Fluid theory is used to look for shear flow-driven instabilities and formation of nonlinear structures ignoring ion temperature effects in this plasma where Freja observations indicate \(T_{i}\approx \) (0.3–0.1)\(T_{e}\). Effects of nonthermal electrons and density gradient on the instabilities and size of the structures are also pointed out.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. W.E. Amatucci, Inhomogeneous plasma flows: A review of in situ observations and laboratory experiments. J. Geophys. Res. 104, 14481 (1999)

    ADS  Google Scholar 

  2. T.K. Baluku, M.A. Hellberg, Kinetic theory of dust ion acoustic waves in a kappa-distributed plasma Phys. Plasmas. 22, 083701 (2015)

    ADS  Google Scholar 

  3. S. Basu, S. Basu, E. MacKenzie, P.F. Fougere, W.R. Coley, N.C. Maynard, J.D. Winningham, M. Sugiura, W.B. Hanson, W.R. Hoegy, Simultaneous density and electric field fluctuation spectra associated with velocity shears in the auroral oval. J. Geophys. Res. 39, 115 (1988)

    ADS  Google Scholar 

  4. J. Bonnell, P. Kintner, J.E. Wahlund, K. Lynch, R. Arnoldy, Interferometric determination of broadband ELF wave phase velocity within a region of transverse auroral ion acceleration. Geophys. Res. Lett. 23, 3297 (1996)

    ADS  Google Scholar 

  5. S.J. Buchsbaum, Resonance in a plasma with two ion species. Phys. Fluids 3, 418 (1960)

    ADS  Google Scholar 

  6. R.A. Cairns, A.A. Mamum, R. Bingham, R. Boström, R.O. Dendy, C.M.C. Nairn, P.K. Shukla, Electrostatic solitary structures in non-thermal plasmas. Geophys. Res. Lett. 22, 2709 (1995)

    ADS  Google Scholar 

  7. C. Cattell, The relationship of field-aligned currents to electrostatic ion cyclotron waves. J. Geophys. Res. 86, 3641 (1981)

    ADS  Google Scholar 

  8. C.A. Cattell, F.S. Mozer, I. Roth, R.R. Anderson, R.C. Elphic, W. Lennartsson, E. Ungstrup, ISEE 1 observations of electrostatic ion cyclotron waves in association with ion beams on auroral field lines from \(\sim 2.5\) to \(4.5\)\(R_{E}\). J. Geophys. Res. 96, 11421 (1991)

    ADS  Google Scholar 

  9. C. Cattell, R. Bergmann, K. Sigsbee, C. Carlson, C. Chaston, R. Ergun, J. McFadden, F.S. Mozer, M. Temerin, R. Strangeway, R. Elphic, L. Kistler, E. Moebius, L. Tang, D. Klumpar, R. Pfaff, The association of electrostatic ion cyclotron waves, ion and electron beams and field-aligned currents: FAST observations of an auroral zone crossing near midnight. Geophys. Res. Lett. 25, 2053 (1998)

    ADS  Google Scholar 

  10. F.F. Chen, Introduction to plasma physics and controlled fusion, 2nd edn. (Plenum, New York, 1984)

    Google Scholar 

  11. V.W. Chow, M. Rosenberg, Electrostatic ion cyclotron instabilities in negative ion plasmas. Phys. Plasmas 1, 2316 (1996)

    Google Scholar 

  12. D.R. Dakin, T. Tajima, G. Benford, N. Rynn, Ion heating by the electrostatic ion cyclotron instability: theory and experiment. J. Plasma Phys. 15, 175 (1976)

    ADS  Google Scholar 

  13. N. D’Angelo, Kelvin-Helmholtz instability in a fully ionized plasma in a magnetic field. Phys. Fluids 8, 1748 (1965)

    ADS  Google Scholar 

  14. N. D’Angelo, R. Motley, Electrostatic oscillations near the ion cyclotron frequency. Phys. Fluids 5, 633 (1962)

    ADS  Google Scholar 

  15. P.O. Dovner, A.I. Eriksson, R. Bostrom, B. Holback, Freja multiprobe observations of electrostatic solitary structures. Geophys. Res. Lett. 21, 1827 (1994)

    ADS  Google Scholar 

  16. W.E. Drummond, M.N. Rosenbluth, Anomalous diffusion arising from microinstabilities in a plasma. Phys. Fluids 5, 1507 (1962)

    ADS  MATH  Google Scholar 

  17. G.D. Earle, M.C. Kelley, G. Ganguli, Large velocity shears and associated electrostatic waves and turbulence in the auroral \(F\) region. J. Geophys. Res. 94, 321 (1989)

    Google Scholar 

  18. A.I. Eriksson, B. Holback, P.O. Dovner, R. Boström, G. Holmgren, M. André, L. Eliasson, P.M. Kintner, Geophys. Res. Lett. 21, 1843 (1994)

    ADS  Google Scholar 

  19. A.I. Eriksson, A. Mälkki, P.O. Dovner, R. Boström, G. Holmgren, B. Holback, A statistical survey of auroral solitary waves and weak double layers: 2. Measurement accuracy and ambient plasma density. J. Geophys. Res. 102, 11385 (1997)

    ADS  Google Scholar 

  20. G. Ganguli, Y.C. Lee, P.J. Palmadesso, Electrostatic ion-cyclotron instability caused by a nonuniform electric field perpendicular to the external magnetic field. Phys. Fluids 28, 761 (1985)

    ADS  MATH  Google Scholar 

  21. G. Ganguli, Y.C. Lee, P.J. Palmadesso, Kinetic theory for electrostatic waves due to transverse velocity shears. Phys. Fluids 31, 823 (1988)

    ADS  MATH  Google Scholar 

  22. G. Ganguli, M.J. Keskinen, H. Romero, R. Heelis, T. Moore, C. Pollock, Coupling of microprocesses and macroprocesses due to velocity shear: an application to the low-altitude ionosphere. J. Geophys. Res. 99, 8873 (1994)

    ADS  Google Scholar 

  23. V.V. Gavrishchaka, M.E. Koepke, G. Ganguli, Dispersive properties of a magnetized plasma with a field-aligned drift and inhomogeneous transverse flow. Phys. Plasmas 3, 3091 (1996)

    ADS  Google Scholar 

  24. V.V. Gavrishchaka, M.E. Koepke, G.I. Ganguli, Ion cyclotron modes in a two-ion-component plasma with transverse-velocity shear. J. Geophys. Res. 102, 11653 (1997)

    ADS  Google Scholar 

  25. V.V. Gavrishchaka, S.B. Ganguli, G.I. Ganguli, Origin of low-frequency oscillations in the ionosphere. Phys. Rev. Lett. 80, 728 (1998)

    ADS  Google Scholar 

  26. V.V. Gavrishchaka, S.B. Ganguli, G.I. Ganguli, Electrostatic oscillations due to filamentary structures in the magnetic-field-aligned flow: the ion-acoustic branch. J. Geophys. Res. 104, 12683 (1999)

    ADS  Google Scholar 

  27. D.A. Gurnett, Review of current research, Geophys. Monogr. Ser., vol. 35, edited by B.T. Tsurutani and R.G. Stone, p. 207, SGU, Washington, D.C., (1985)

  28. D.A. Gurnett, F.M. Neubauer, R. Schwenn, Plasma wave turbulence associated with an interplanetary shock. J. Geophys. Res. 84, 541 (1979)

    ADS  Google Scholar 

  29. A. Hasegawa, Plasma instabilities and non-linear effects (Springer, Berlin, 1975)

    Google Scholar 

  30. R.A. Hess, R.G. MacDowall, B. Goldstein, M. Neugebauer, R.J. Forsyth, Ion acoustic-like waves observed by Ulysses near interplanetary shock waves in the three-dimensional heliosphere. J. Geophys. Res. 103, 6531 (1998)

    ADS  Google Scholar 

  31. J.H. Hoffman, W.H. Dodson, Light ion concentrations and fluxes in the polar regions during magnetically quiet times. J. Geophys. Res. 85, 626–632 (1980)

    ADS  Google Scholar 

  32. J.L. Horowitz, C.J. Pollock, T.E. Moore, W.K. Peterson, J.L. Burch, J.D. Winningham, J.D. Craven, L.A. Frank, A. Persoon, The polar cap environment of outflowing \(O^{+}\). J. Geophys. Res. 97, 8361 (1992)

    ADS  Google Scholar 

  33. J.R. Johnson, T. Cheng, Nonlinear vortex structures with diverging electric fields and their relation to the black aurora. Geophys. Res. Lett. 22, 1481 (1995)

    ADS  Google Scholar 

  34. A. Kakad, B. Kakad, C.R. Anekallu, G. Lakhina, Y. Omura, A. Fazakerley, Slow electrostatic solitary waves in Earth’s plasma sheet boundary layer. J. Geophys. Res. Sp. Phys. 121, 4452 (2016)

    ADS  Google Scholar 

  35. M.C. Kelley, The earth ionosphere: plasma physics and electrodynamics, 2nd edn. (Academic Press, Elsevier, Oxford, 2009)

    Google Scholar 

  36. M.C. Kelley, C.W. Carlson, Observations of intense velocity shear and associated electrostatic waves near an auroral arc. J. Geophys. Res. 82, 2343 (1977)

    ADS  Google Scholar 

  37. C.F. Kennel, F.L. Scarf, F.V. Coroniti, E.J. Smith, D.A. Gurnett, Nonlocal plasma turbulence associated with interplanetary shocks. J. Geophys. Res. 87, 17 (1982)

    ADS  Google Scholar 

  38. G. Khazanov, M. Koen, Y. Konikov, I. Sidorov, Simulation of ionosphere-plasmasphere coupling taking into account ion inertia and temperature anisotropy. Planet. Sp. Sci. 32, 585 (1984)

    ADS  Google Scholar 

  39. S.H. Kim, R.L. Merlino, Electron attachment to \(C_{ \mathbf{7}}F_{\mathbf{14}}\) and \(SF_{\mathbf{6}}\) in a thermally ionized potassium plasma. Phys. Rev. E 76, 035401 (2007)

    ADS  Google Scholar 

  40. S.H. Kim, J.R. Heinrich, R.L. Merlino, Electrostatic ion-cyclotron waves in a plasma with heavy negative ions. Planet Sp. Sci. 56, 1552 (2008)

    ADS  Google Scholar 

  41. S.H. Kim, R.L. Merlino, J.K. Meyer, M. Rosenberg, Low-frequency electrostatic waves in a magnetized, current-free, heavy negative ion plasma. J. Plasma Phys. 79, 1107 (2013)

    ADS  Google Scholar 

  42. J.M. Kindel, C.F. Kennel, Topside current instabilities. J. Geophys. Res. 76, 3055 (1971)

    ADS  Google Scholar 

  43. P.M. Kintner, M.C. Kelley, F.S. Mozer, Electrostatic hydrogen cyclotron waves near one Earth radius altitude in the polar magnetosphere. Geophys. Res. Lett. 5, 139 (1978)

    ADS  Google Scholar 

  44. P.M. Kintner, M.C. Kelley, R.D. Sharp, A.G. Ghielmetti, M. Temerin, C. Cattell, P.F. Mizera, J.F. Fennell, Simultaneous observations of energetic (\(keV\)) upstreaming and electrostatic hydrogen cyclotron waves. J. Geophys. Res. 84, 7201 (1979)

    ADS  Google Scholar 

  45. P.M. Kintner, J. Bonnell, R. Arnoldy, K. Lynch, C. Pollock, T. Moore, J. Holtet, C. Deehr, H. Stenbaek-Nielsen, R. Smith, J. Olson, J. Moen, The SCIFER experiment. Geophys. Res. Lett. 23, 1865 (1996)

    ADS  Google Scholar 

  46. D.J. Knudsen, J.E. Wahlund, Core ion flux bursts within solitary kinetic Alfvén waves. J. Geophys. Res. 103, 4157 (1998)

    ADS  Google Scholar 

  47. M.E. Koepke, W.E. Amatucci, J.J. Carroll III, V. Gavrishchaka, G. Ganguli, Velocity-shear-induced ion-cyclotron turbulence: Laboratory identification and space applications. Phys. Plasmas 2, 2523 (1995)

    ADS  Google Scholar 

  48. M.E. Koepke, J.J. Carroll III, M.W. Zintl, Excitation and propagation of electrostatic ion-cyclotron waves in plasma with structured transverse flow, Phys. Plasmas 5, 1671 (1998)

    ADS  Google Scholar 

  49. M.E. Koepke, P.K. Shukla, B. Eliasson, Response to “Comment on ‘Electron parallel-flow shear driven low-frequency electromagnetic modes in collisionless magnetoplasma’” [Phys. Plasmas, 094701 (2006)]. Phys. Plasmas 13(9):094702 (2006)

    ADS  Google Scholar 

  50. J. Krall, J.D. Huba, SAMI3 simulation of plasmasphere refilling. Geophys. Res. Lett. 40, 2484 (2013)

    ADS  Google Scholar 

  51. G.S. Lakhina, Low-frequency electrostatic noise due to velocity shear instabilities in the regions of magnetospheric flow boundaries. J. Geophys. Res. 92, 12161 (1987)

    ADS  Google Scholar 

  52. G.S. Lakhina, A.P. Kakad, S.V. Singh, F. Verheest, Ion- and electron-acoustic solitons in two-electron temperature space plasmas. Phys. Plasmas 15, 062903 (2008a)

    ADS  Google Scholar 

  53. G.S. Lakhina, S.V. Singh, A.P. Kakad, F. Verheest, R. Bharuthram, Study of nonlinear ion- and electron-acoustic waves in multi-component space plasmas. Nonlinear Proc. Geophys. 15, 903 (2008b)

    ADS  Google Scholar 

  54. G.S. Lakhina, S.V. Singh, A.P. Kakad, Ion- and electron-acoustic solitons and double layers in multi-component space plasmas. Adv. Sp. Res. 47, 1558 (2011)

    ADS  Google Scholar 

  55. G.S. Lakhina, S.V. Singh, A.P. Kakad, Ion acoustic solitons/double layers in two-ion plasma revisited. Phys. Plasmas 21, 062311 (2014)

    ADS  Google Scholar 

  56. G.S. Lakhina, S.V. Singh, R. Rubia, T. Sreeraj, A review of nonlinear fluid models for ion-and electron-acoustic solitons and double layers: application to weak double layers and electrostatic solitary waves in the solar wind and the lunar wake. Phys. Plasmas 25, 080501 (2018)

    ADS  Google Scholar 

  57. G. Livadiotis, D.J. McComas, Understanding kappa distributions: a toolbox for space science and astrophysics. Sp. Sci. Rev. 175, 183 (2013)

    ADS  Google Scholar 

  58. M. Lockwood, M.O. Chandler, J.L. Horwitz, J.R. Waite Jr., T.E. Moore, C.R. Chappell, The cleft ion fountain. J. Geophys. Res. 90, 9736 (1985)

    ADS  Google Scholar 

  59. R. Lundin, L. Eliasson, B. Hultqvist, K. Stasiewicz, Plasma energization on auroral field lines as observed by the Viking spacecraft. Geophys. Res. Lett. 14, 443 (1987)

    ADS  Google Scholar 

  60. R. Lysak, M. Hudson, M. Temerin, Ion Heating by strong electrostatic ion cyclotron turbulence. J. Geophys. Res. 85, 678 (1980)

    ADS  Google Scholar 

  61. S.K. Maharaj, R. Bharuthram, S.V. Singh, G.S. Lakhina, Existence domains of arbitrary amplitude nonlinear structures in twoelectron temperature space plasmas. I. Low-frequency ion-acoustic solitons. Phys. Plasmas 19, 072320 (2012)

    ADS  Google Scholar 

  62. S. Mahmood, H. Saleem, Ion acoustic auroral structures in the presence of hot ion precipitation in the upper ionosphere. J. Geophys. Res. 110, A09306 (2005)

    ADS  Google Scholar 

  63. G.T. Marklund, Auroral phenomena related to intense electric fields observed by the Freja satellite. Plasma Phys. Control. Fusion 39, A195 (1997)

    ADS  Google Scholar 

  64. G.T. Marklund, Electric fields and plasma processes in the auroral downward current region, below, within, and above the acceleration region. Sp. Sci. Rev. 142, 1 (2009)

    ADS  Google Scholar 

  65. G.T. Marklund, L.G. Blomberg, P.A. Lindqvist, C.G. Fälthammar, G. Haerendel, F.S. Mozer, A. Pedersen, P. Tanskanen, The double probe electric field experiment on Freja: experiment description and first results. Sp. Sci. Rev. 70, 483 (1994a)

    ADS  Google Scholar 

  66. G.T. Marklund, L. Blomberg, C.G. Fälthammar, P.A. Lindqvist, On intense diverging electric fields associated with black aurora. Geophys. Res. Lett. 21, 1859 (1994b)

    ADS  Google Scholar 

  67. J.P. McFadden, C.W. Carlson, R.E. Ergun, F.S. Mozer, M. Temerin, W. Peria, D.M. Klumpar, E.G. Shelley, W.K. Peterson, E. Moebius, L. Kistler, R. Elphic, R. Strangeway, C. Cattell, R. Pfaff, Spatial structure and gradients of ion beams observed by FAST. Geophys. Res. Lett. 25, 2021 (1998)

    ADS  Google Scholar 

  68. T.E. Moore, Superthermal ionospheric outflows. Rev. Geophys. Sp. Phys. 22, 264 (1984)

    ADS  Google Scholar 

  69. T.E. Moore, Origins of magnetospheric plasma. Rev. Geophys. 29, 1039 (1991)

    ADS  Google Scholar 

  70. T.E. Moore, M. Lockwood, M.O. Chandler, J.H. Waite Jr., A. Persoon, Sugiura, Upwelling \(O^{+}\) ion source characteristics. J. Geophys. Res. 91, 7019 (1986)

    ADS  Google Scholar 

  71. T.E. Moore, M.O. Chandler, C.J. Pollock, D.L. Reasoner, R.L. Arnoldy, B. Austin, P.M. Kintner, J. Bonnel, Plasma heating and flow in an auroral arc. J. Geophys. Res. 101, 5279 (1996)

    ADS  Google Scholar 

  72. F.S. Mozer, C.W. Carlson, M.K. Hudson, R.B. Torbert, B. Parady, J. Yatteau, M.C. Kelley, Observations of paired electrostatic shocks in the polar magnetosphere. Phys. Rev. Lett. 38, 292 (1977)

    ADS  Google Scholar 

  73. F.S. Mozer, R. Ergun, M. Temerin, C. Cattell, J. Dombeck, J. Wygant, New features of time domain electric-field structures in the auroral acceleration region. Phys. Rev. Lett. 79, 1281 (1997)

    ADS  Google Scholar 

  74. Y. Nakamura, I. Tsukabeyashi, Observation of modified Korteweg-de Vries solitons in a multicomponent plasma with negative ions. Phys. Rev. Lett. 52, 2356 (1984)

    ADS  Google Scholar 

  75. K.I. Nishikawa, G. Ganguli, Y.C. Lee, Palmadesso, Simulation of ion-cyclotron-like modes in a magnetoplasma with transverse inhomogeneous electric field. Phys. Fluids 31, 1568 (1988)

    ADS  Google Scholar 

  76. K.I. Nishikawa, G. Ganguli, Y.C. Lee, Palmadesso, Simulation of electrostatic turbulence due to sheared flows parallel and transverse to the magnetic field. J. Geophys. Res. 95, 1029 (1990)

    ADS  Google Scholar 

  77. Y. Ogawa, S.C. Buchert, R. Fujii, S. Nozawa, A.P. van Eyken, Characteristics of ion upflow and downflow observed with the European Incoherent Scatter Svalbard radar. J. Geophys. Res. 114, A05305 (2009)

    ADS  Google Scholar 

  78. Y. Ogawa, M. Sawatsubashi, S.C. Buchert, K. Hosokawa, S. Taguchi, S. Nozawa, S. Oyama, T.T. Tsuda, R. Fujii, Relationship between auroral substorm and ion upflow in the nightside polar ionosphere. J. Geophys. Res. 118, 7426 (2013)

    Google Scholar 

  79. H. Okuda, M. Ashour-Abdalla, Formation of a conical distribution and intense ion heating in the presence of hydrogen cyclotron waves. Geophys. Res. Lett. 8, 811 (1981c)

    ADS  Google Scholar 

  80. H. Okuda, K.I. Nishikawa, Ion-beam-driven electrostatic hydrogen cyclotron waves on auroral field lines. J. Geophys. Res. 89, 1023 (1984)

    ADS  Google Scholar 

  81. H. Okuda, C.Z. Cheng, W.W. Lee, Numerical simulations of electrostatic hydrogen cyclotron instabilities. Phys. Fluids 24, 1060 (1981a)

    ADS  Google Scholar 

  82. H. Okuda, C.Z. Cheng, W.W. Lee, Anomalous diffusion and ion heating in the presence of electrostatic hydrogen cyclotron instabilities. Phys. Rev. Letts. 46, 427 (1981b)

    ADS  Google Scholar 

  83. T.G. Onsager, R.H. Holzworth, H.C. Koons, O.H. Bauer, D.H. Gurnett, R.R. Anderson, H. Luhr, C.W. Carlson, J. Geophys. Res. 15, 397 (1989)

    Google Scholar 

  84. W. Oohara, R. Hatakeyama, Pair-ion plasma generation using fullerenes. Phys. Rev. Letts. 91, 205005–1 (2003)

    ADS  Google Scholar 

  85. W. Oohara, R. Hatakeyama, Basic studies of the generation and collective motion of pair-ion plasmas. Phys. Plasmas 14, 055704 (2007a)

    ADS  Google Scholar 

  86. W. Oohara, D. Date, R. Hatakeyama, Electrostatic waves in a paired Fullerene-ion plasma. Phys. Rev. Lett. 95, 175003 (2005)

    ADS  Google Scholar 

  87. W. Oohara, Y. Kuwabara, R. Hatakeyama, Collective mode properties in a paired fullerene-ion plasma. Phys. Rev. E 75, 056403 (2007b)

    ADS  Google Scholar 

  88. W. Oohara, M. Fujii, M. Watai, Y. Hiraoka, M. Egawa, Y. Morinaga, S. Takamori, M. Yoshida, Generation of hydrogen ionic plasma superimposed with positive ion beam. AIP Adv. 9, 085303 (2019)

    ADS  Google Scholar 

  89. J.S. Pickett, S.W. Kahler, L.J. Chen, R.L. Huff, O. Santolik, Y. Khotyaintsev, P.M.E. Decreau, D. Winningham, R. Frahm, M.L. Goldstein, G.S. Lakhina, B.T. Tsurutani, B. Lavraud, D.A. Gurnett, M. Andre, A. Fazakerley, A. Balogh, H. Reme, Solitary waves observed in the auroral zone: the Cluster multi-spacecraft perspective. Nonlinear Process. Geophys. 11, 183 (2004)

    ADS  Google Scholar 

  90. V. Pierrard, J. Lemaire, Lorentzian ion exosphere model. J. Geophys. Res. 101, 7923 (1996)

    ADS  Google Scholar 

  91. V. Pierrard, M. Pieters, Coronal heating and solar wind acceleration for electrons, protons, and minor ions obtained from kinetic models based on kappa distributions. J. Geophys. Res. 119, 9441 (2014)

    Google Scholar 

  92. C.J. Pollock, M.O. Chandler, T.E. Moore, J.H. Waite Jr., C.R. Chappell, D.A. Gurnett, A survey of upwelling ion event characteristics. J. Geophys. Res. 95, 18969 (1990)

    ADS  Google Scholar 

  93. C.E. Rasmussen, S.M. Guiter, S.G. Thomas, A two-dimensional model of the plasmasphere: refilling time constants. Planet. Sp. Sci. 41, 35 (1993)

    ADS  Google Scholar 

  94. R.V. Reddy, G.S. Lakhina, Ion acoustic double layers and solitons in auroral plasma. Planet. Sp. Sci. 39, 1343 (1991)

    ADS  Google Scholar 

  95. R.V. Reddy, G.S. Lakhina, F. Verheest, Ion-acoustic double layers and solitons in multispecies auroral beam-plasmas. Planet. Sp. Sci. 40, 1055 (1992)

    ADS  Google Scholar 

  96. A. Rehman, S.A. Shan, T. Majeed, Effect of collisions on Weibel instability with anisotropic electron distributions. Phys. Plasmas 24, 122113 (2017)

    Google Scholar 

  97. P.G. Richards, D.G. Torr, Auroral modeling of the 3371 Å emission rate: dependence on characteristic electron energyJ. Geophys. Res. 95, 10337 (1990)

    ADS  Google Scholar 

  98. P. Rodriguez, D.A. Gurnett, Electrostatic and electromagnetic turbulence associated with the Earth’s bow shock: Cluster observations. J. Geophys. Res. 81, 2871 (1976)

    ADS  Google Scholar 

  99. H. Romero, G. Ganguli, Nonlinear evolution of a strongly sheared crossfield plasma flow. Phys. Fluids B 5, 3163 (1993)

    ADS  Google Scholar 

  100. H. Romero, G. Ganguli, Y.C. Lee, on acceleration and coherent structures generated by lower hybrid shear-driven instabilities. Phys. Rev. Lett. 69, 3503 (1992)

    ADS  Google Scholar 

  101. M. Rosenberg, R.L. Merlino, Instability of higher harmonic electrostatic ion cyclotron waves in a negative ion plasma. J. Plasma Phys. 75, 495 (2009)

    ADS  Google Scholar 

  102. M. Rosenberg, R.L. Merlino, Drift instability in a positive ion-negative ion plasma. J. Plasma Phys. 79, 949 (2013)

    ADS  Google Scholar 

  103. A. Roux, S. Perraut, J.L. Rauch, C. De Villedary, G. Kremser, A. Korth, D.T. Young, Wave-particle interactions near \( \Omega _{He^{+}}\) observed on board GEOS 1 and 2: 2. Generation of ion cyclotron waves and heating of \(He^{+}\) ions. J. Geophys. Res. 87, 8174 (1982)

    ADS  Google Scholar 

  104. R. Rubia, S.V. Singh, G.S. Lakhina, Existence domains of electrostatic solitary structures in the solar wind plasma. Phys. Plasmas 23, 062902 (2016)

    ADS  Google Scholar 

  105. R. Rubia, S.V. Singh, G.S. Lakhina, Occurrence of electrostatic solitary waves in the lunar wake. J. Geophys. Res. Sp. Phys. 122, 9134 (2017)

    ADS  Google Scholar 

  106. R. Rubia, S.V. Singh, G.S. Lakhina, Existence domain of electrostatic solitary waves in the lunar wake. Phys. Plasmas 25, 032302 (2018)

    ADS  Google Scholar 

  107. O.R. Rufai, R. Bharuthram, S.V. Singh, G.S. Lakhina, Low frequency solitons and double layers in a magnetized plasma with two temperature electrons. Phys. Plasmas 19, 122308 (2012)

    ADS  Google Scholar 

  108. O.R. Rufai, R. Bharuthram, S.V. Singh, G.S. Lakhina, Ion acoustic solitons and supersolitons in a magnetized plasma with nonthermal hot electrons and Boltzmann cool electrons. Phys. Plasmas 21, 082304 (2014)

    ADS  Google Scholar 

  109. O.R. Rufai, R. Bharuthram, S.V. Singh, G.S. Lakhina, Obliquely propagating ion-acoustic solitons and supersolitons in four-component auroral plasmas. Adv. Sp. Res. 57, 813 (2016)

    ADS  Google Scholar 

  110. R.Z. Sagdeev, In reviews of plasma physics, vol. 3 (Consultants Bureau, New York, 1966), p. 23

    Google Scholar 

  111. H. Saleem, Kinetic theory of acoustic wave in pair-ion plasmas. Phys. Plasmas 13, 044502 (2006)

    ADS  Google Scholar 

  112. H. Saleem, A criterion for pure pair-ion plasmas and the role of quasineutrality in nonlinear dynamics. Phys. Plasmas 14, 014505 (2007c)

    ADS  MathSciNet  Google Scholar 

  113. H. Saleem, J. Vranjes, S. Poedts, On the shear flow instability and its applications to multicomponent plasmas. Phys. Plasmas 14, 072104 (2007a)

    ADS  Google Scholar 

  114. H. Saleem, J. Vranjes, S. Poedts, Unstable drift mode driven by shear plasma flow in solar spicules. Astron. Astrophys. 471, 289 (2007b)

    ADS  Google Scholar 

  115. H. Saleem, S. Ali, Q. Haque, Ion acoustic wave instabilities and nonlinear structures associated with field-aligned flows in the \(F\)-region ionosphere. Phys. Plasmas 23, 112901 (2016)

    ADS  Google Scholar 

  116. H. Saleem, S.A. Shan, A. Rehman, Ions shear flow and electron field-aligned current produce ion acoustic waves in the oxygen-hydrogen ionospheric plasma. Phys. Plasmas 24, 122901 (2017)

    ADS  Google Scholar 

  117. R.W. Schunk, A.F. Nagy, Rev. Geophys. 16, 355 (1978). https://doi.org/10.1029/RG016i003p00355

    ADS  Article  Google Scholar 

  118. S. Sen, R.A. Cairns, R.G. Storer, D.R. McCarthy, Stability and transport of parallel velocity shear driven mode with negative magnetic shear. Phys. Plasmas 7, 1192 (2000)

    ADS  MathSciNet  Google Scholar 

  119. S.A. Shan, Coupled ion acoustic and drift solitons in a magnetized bi-ion plasma with pseudo-potential approach. Phys. Plasmas 25, 022113 (2018)

    ADS  Google Scholar 

  120. S.A. Shan, Q. Haque, Drift and ion acoustic wave driven vortices with superthermal electrons. Phys. Plasmas 19, 084503 (2012)

    ADS  Google Scholar 

  121. S.A. Shan, S.A. El-Tantawy, W.M. Moslem, On the fully nonlinear acoustic waves in a plasma with positrons beam impact and superthermal electrons. Phys. Plasmas 20, 082104 (2013)

    ADS  Google Scholar 

  122. S.A. Shan, I. Hassan, H. Saleem, Electrostatic wave instability and soliton formation with non-thermal electrons in \(O\)-\(H\) plasma of ionosphere. Phys. Plasmas 26, 022114 (2019)

    ADS  Google Scholar 

  123. E.G. Shelley, R.G. Johnson, R.D. Sharp, Satellite observations of energetic heavy ions during a geomagnetic storm. J. Geophys. Res. 77, 6104 (1972)

    ADS  Google Scholar 

  124. E.G. Shelley, R.D. Sharp, R.G. Johnson, Satellite observations of an ionospheric acceleration mechanism. Geophys. Res. Lett. 3, 654 (1976)

    ADS  Google Scholar 

  125. P.K. Shukla, P.H. Sakanaka, A nonlinear model for auroral density cavities. Geophys. Res. Lett. 27, 89 (2000)

    ADS  Google Scholar 

  126. P.K. Shukla, G.T. Birk, R. Bingham, Vortex streets driven by sheared flow and applications to black aurora. Geophys. Res. Lett. 22, 671 (1995)

    ADS  Google Scholar 

  127. S.V. Singh, G.S. Lakhina, Ion-acoustic supersolitons in the presence of non-thermal electrons. Commun. Nonlinear Sci. Numer. Simulat. 23, 274 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  128. R.L. Smith, N. Brice, Propagation in multicomponent plasmas. J. Geophys. Res. 69, 5029 (1964)

    ADS  MATH  Google Scholar 

  129. T. Sreeraj, S.V. Singh, G.S. Lakhina, Coupling of electrostatic ion cyclotron and ion acoustic waves in the solar wind. Phys. Plasmas 23, 082901 (2016)

    ADS  Google Scholar 

  130. T. Sreeraj, S.V. Singh, G.S. Lakhina, Higher harmonic instability of electrostatic ion cyclotron waves. Pramana J. Phys. 92, 78 (2019)

    ADS  Google Scholar 

  131. T. Tang, C. Cattell, R. Lysak, L.B. Wilson, L. Dai, S. Thaller, THEMIS observations of electrostatic ion cyclotron waves and associated ion heating near the Earth’s day side magnetopause. J. Geophys. Res. 120, 3380 (2015)

    Google Scholar 

  132. M. Temerin, M. Woldorff, F.S. Mozer, Nonlinear steepening of the electrostatic ion cyclotron wave. Phys. Rev. Lett. 43, 1941 (1979)

    ADS  Google Scholar 

  133. R.T. Tsunoda, R.C. Livingston, J.F. Vickrey, R.A. Heelis, W.B. Hanson, F.J. Rich, P.F. Bythrow, J. Geophys. Res. 94, 15,277 (1989)

    ADS  Google Scholar 

  134. J.N. Tu, J.L. Horwitz, P. Song, X.Q. Huang, B.W. Reinisch, P.G. Richards, Simulating plasmaspheric field-aligned density profiles measured with IMAGE/RPI: effects of plasmasphere refilling and ion heating. J. Geophys. Res. 108, 1017 (2003)

    Google Scholar 

  135. V.M. Vasyliunas, A survey of low-energy electrons in the evening sector of the magnetosphere with OGO 1 and OGO 3. J. Geophys. Res. 73, 2839 (1968)

    ADS  Google Scholar 

  136. F. Verheest, Existence of bulk acoustic modes in pair plasmas. Phys. Plasmas 13, 082301 (2006)

    ADS  Google Scholar 

  137. J.E. Wahlund, P. Louarn, T. Chust, H. de Feraudy, A. Roux, B. Holback, B. Cabrit, A.I. Eriksson, P.M. Kinruer, M.C. Kelley, J. Bonnell, S. Chesney, Observations of ion acoustic fluctuations in the auroral topside ionosphere by the FREJA S/C. Geophys. Res. Lett. 21, 1835 (1994a)

    ADS  Google Scholar 

  138. J.E. Wahlund, P. Louarn, T. Chust, H. de Feraudy, A. Roux, B. Holback, P.O. Dovner, G. Holmgren, On ion acoustic turbulence and the nonlinear evolution of kinetic Alfvén waves in aurora. Geophys. Res. Lett. 21, 1831 (1994b)

    ADS  Google Scholar 

  139. Y. Wang, J. Tu, P. Song, A new dynamic fluid-kineticmodel for plasma transport within the plasmasphere. J. Geophys. Res. Sp. Phys. 108, 1017 (2015)

    Google Scholar 

  140. P. Webb, E. Essex, A dynamic global model of the plasmasphere. J. Atmos. Sol. Terr. Phys. 66, 1057 (2004)

    ADS  Google Scholar 

  141. B.A. Whalen, W. Bernstein, P.W. Daly, Low altitude acceleration of ionospheric ions. Geophys. Res. Lett. 5, 55 (1978)

    ADS  Google Scholar 

  142. J. Willig, R.L. Merlino, N. D’Angelo, Experimental study of the parallel velocity shear instability. Phys. Lett. A 236, 223 (1997a)

    ADS  Google Scholar 

  143. J. Willig, R.L. Merlino, N. D’Angelo, Experimental study of the collisional parallel velocity shear instability. J. Geophys. Res. 102, 27249 (1997b)

    ADS  Google Scholar 

  144. G.R. Wilson, Semikinetic modeling of the outflow of ionospheric plasma through the topside collisional to collisionless transition region. J. Geophys. Res. 97, 10551 (1992)

    ADS  Google Scholar 

  145. X.Y. Wu, J.L. Horwitz, G.M. Estep, Y.J. Su, D.G. Brown, P.G. Richards, G.R. Wilson, Dynamic fluid-kinetic (DyFK) modeling of auroral plasma outflow driven by soft electron precipitation and transverse ion heating. J. Geophys. Res. 104, 17263 (1999)

    ADS  Google Scholar 

  146. X.Y. Wu, J.L. Horwitz, J.N. Tu, Dynamic fluid kinetic (DyFK) simulation of auroral ion transport: synergistic effects of parallel potentials, transverse ion heating, and soft electron precipitation. J. Geophys. Res. 107, 1283 (2002)

    Google Scholar 

  147. A.W. Yau, B.A. Whalen, A.G. McNamara, P.J. Kellogg, W. Bernstein, J. Geophys. Res. 88, 3411 (1983)

    Google Scholar 

  148. A.W. Yau, T. Abe, W.K. Peterson, The polar wind: recent observations. J. Atmos. Sol. Terr. Phys. 69, 1936 (2007)

    ADS  Google Scholar 

  149. D.T. Young, S. Perraut, A. Roux, C. De Villedary, R. Gendrin, A. Korth, G. Kremser, D. Jones, Wave-particle interactions near \( \Omega _{He^{+}}\) observed on GEOS 1 and 2: 1. Propagation of ion cyclotron waves in He\(^{+}\)-rich plasma. J. Geophys. Res. 86, 6755 (1981)

    ADS  Google Scholar 

Download references

Acknowledgements

One of the authors, Dr. Hamid Saleem is grateful to the Higher Education Commission (HEC), Pakistan, for providing partial support under NRPU Project no. 5841.

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. Ali Shan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Saleem, H., Shan, S.A. Theoretical models for unstable IAWs and nonlinear structures in the upper ionosphere. Rev. Mod. Plasma Phys. 4, 3 (2020). https://doi.org/10.1007/s41614-019-0038-9

Download citation