Recent progress in Asia-Pacific solar physics and astrophysics

Summary of the Solar/Astron session

Abstract

More than 40 participants from the solar/astrophysical community attended the First Asia-Pacific Conference on Plasma Physics. Among them, four colleagues presented invited talks in the plenary session. In the Solar/Astron session, there were 23 invited talks and 14 contributed talks, with another two posters. These talks cover recent progress obtained in a wide spectrum of topics, including solar and galactic dynamo, solar and stellar flares, solar and galactic filaments, solar and astrophysical jets, solar and accretion disk winds, plasma waves and coronal heating, solar coronal mass ejections, magnetic reconnection in non-relativistic and relativistic regimes, star and planetary formation, shock–medium interactions, and even gravitational waves. Laboratory laser experiments and some new rocket and space missions were also introduced.

This is a preview of subscription content, access via your institution.

Fig. 1

Taken from Hotta et al. (2016)

Fig. 2

Taken from Chen et al. (2014b)

Fig. 3

Taken from Ouyang et al. (2017)

Fig. 4

Taken from Hillier et al. (2012a)

Fig. 5

Adapted from Prasad et al. (2015)

Fig. 6

Taken from Okamoto et al. (2015)

Fig. 7

Taken from Iijima and Yokoyama (2017)

Fig. 8

Taken from Tan and Tan (2012)

Fig. 9

Taken from Shibata et al. (2013)

Fig. 10

Taken from Muhamad et al. (2017)

Fig. 11

Taken from Takahashi et al. (2016)

Fig. 12

Adapted from Machida et al. (2013)

Fig. 13

Taken from Yuan et al. (2015)

Fig. 14

Taken from Tomida et al. (2015)

Fig. 15

Taken from Umeda et al. (2014)

Fig. 16

Taken from Inoue and Inutsuka (2012)

Fig. 17

Taken from Matsumoto et al. (2017)

Fig. 18

Taken from Kano et al. (2017)

Fig. 19

Taken from Zhong et al. (2016)

References

  1. B.P. Abbott, R. Abbott, T.D. Abbott, M.R. Abernathy, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R.X. Adhikari et al., Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116(6), 061102 (2016). https://doi.org/10.1103/PhysRevLett.116.061102,1602.03837

    ADS  MathSciNet  Article  Google Scholar 

  2. J.J. Aly, How much energy can be stored in a three-dimensional force-free magnetic field? ApJL 375, L61–L64 (1991). https://doi.org/10.1086/186088

    ADS  Article  Google Scholar 

  3. T.E. Berger, R.A. Shine, G.L. Slater et al., Hinode SOT observations of solar quiescent prominence dynamics. ApJL 676, L89 (2008). https://doi.org/10.1086/587171

    ADS  Article  Google Scholar 

  4. Y. Bi, Y. Jiang, J. Yang, J. Hong, H. Li, B. Yang, Z. Xu, Observation of a reversal of rotation in a sunspot during a solar flare. Nat. Commun. 7, 13798 (2016). https://doi.org/10.1038/ncomms13798

    ADS  Article  Google Scholar 

  5. Y. Bi, J. Yang, Y. Jiang, J. Hong, Z. Xu, Z. Qu, K. Ji, The photospheric vortex flows during a solar flare. ApJL 849, L35 (2017). https://doi.org/10.3847/2041-8213/aa960e

    ADS  Article  Google Scholar 

  6. D.F. Bu, F. Yuan, Z.M. Gan, X.H. Yang, Hydrodynamical numerical simulation of wind production from black hole hot accretion flows at very large radii. ApJ 818, 83 (2016a). https://doi.org/10.3847/0004-637X/818/1/83. 1510.03124

    ADS  Article  Google Scholar 

  7. D.F. Bu, F. Yuan, Z.M. Gan, X.H. Yang, Magnetohydrodynamic numerical simulation of wind production from hot accretion flows around black holes at very large radii. ApJ 823, 90 (2016b). https://doi.org/10.3847/0004-637X/823/2/90. 1603.09442

    ADS  Article  Google Scholar 

  8. L. Chen, D.J. Wu, G.Q. Zhao, J.F. Tang, J. Huang, Excitation of Kinetic Alfvén waves by fast electron beams. ApJ 793, 13 (2014a). https://doi.org/10.1088/0004-637X/793/1/13

    ADS  Article  Google Scholar 

  9. P.F. Chen, Coronal mass ejections: models and their observational basis. Living Rev. Sol. Phys. 8, 1 (2011). https://doi.org/10.12942/lrsp-2011-1

    ADS  Article  Google Scholar 

  10. P.F. Chen, K. Shibata, An emerging flux trigger mechanism for coronal mass ejections. ApJ 545, 524–531 (2000). https://doi.org/10.1086/317803

    ADS  Article  Google Scholar 

  11. P.F. Chen, L.K. Harra, C. Fang, Imaging and spectroscopic observations of a filament channel and the implications for the nature of counter-streamings. ApJ 784, 50 (2014b). https://doi.org/10.1088/0004-637X/784/1/50.1401.4514

    ADS  Article  Google Scholar 

  12. G.S. Choe, Revisiting the Aly-Sturrock constraint. ApJ (2018). In preparation

  13. A.R. Choudhuri, Starspots, stellar cycles and stellar flares: lessons from solar dynamo models. Sci. China Phys., Mech. Astron. 60(1), 19601 (2017). https://doi.org/10.1007/s11433-016-0413-7.1612.02544

    ADS  Article  Google Scholar 

  14. Y. Fan, F. Fang, A simulation of convective dynamo in the solar convective envelope: maintenance of the solar-like differential rotation and emerging flux. ApJ 789, 35 (2014). https://doi.org/10.1088/0004-637X/789/1/35.1405.3926

    ADS  Article  Google Scholar 

  15. J. Feynman, S.F. Martin, The initiation of coronal mass ejections by newly emerging magnetic flux. JGR 100, 3355–3367 (1995). https://doi.org/10.1029/94JA02591

    ADS  Article  Google Scholar 

  16. T.K. Fowler, H. Li, Spheromaks and how plasmas may explain the ultra high energy cosmic ray mystery. J. Plasma Phys. 82(5), 595820503 (2016). https://doi.org/10.1017/S0022377816000866

    Article  Google Scholar 

  17. W. Gan , Y. Deng, H. Li, et al, ASO-S: advanced space-based solar observatory. in Proceedings of the SPIE Solar Physics and Space Weather Instrumentation VI, vol. 9604, p. 96040T. https://doi.org/10.1117/12.2189062

  18. M. Ghizaru, P. Charbonneau, P.K. Smolarkiewicz, Magnetic cycles in global large-eddy simulations of solar convection. ApJL 715, L133–L137 (2010). https://doi.org/10.1088/2041-8205/715/2/L133

    ADS  Article  Google Scholar 

  19. Y. Guo, B. Schmieder, P. Démoulin, T. Wiegelmann, G. Aulanier, T. Török, V. Bommier, Coexisting flux rope and dipped arcade sections along one solar filament. ApJ 714, 343–354 (2010). https://doi.org/10.1088/0004-637X/714/1/343

    ADS  Article  Google Scholar 

  20. J.L. Han, Observing interstellar and intergalactic magnetic fields. ARAA 55, 111–157 (2017). https://doi.org/10.1146/annurev-astro-091916-055221

    ADS  Article  Google Scholar 

  21. A. Hillier, The magnetic Rayleigh–Taylor instability in solar prominences. Rev. Mod. Plasma Phys. 2, 1 (2018). https://doi.org/10.1007/s41614-017-0013-2

    ADS  Article  Google Scholar 

  22. A. Hillier, T. Berger, H. Isobe, K. Shibata, Numerical simulations of the Magnetic Rayleigh–Taylor instability in the Kippenhahn–Schlüter prominence model. I. Formation of upflows. ApJ 746, 120 (2012a). https://doi.org/10.1088/0004-637X/746/2/120

    ADS  Article  Google Scholar 

  23. A. Hillier, R. Hillier, D. Tripathi, Determination of prominence plasma \(\beta\) from the dynamics of rising plumes. ApJ 761, 106 (2012b). https://doi.org/10.1088/0004-637X/761/2/106.1211.0742

    ADS  Article  Google Scholar 

  24. H. Hotta, M. Rempel, T. Yokoyama, Large-scale magnetic fields at high Reynolds numbers in magnetohydrodynamic simulations. Science 351, 1427–1430 (2016). https://doi.org/10.1126/science.aad1893

    ADS  MathSciNet  Article  MATH  Google Scholar 

  25. H. Iijima, T. Yokoyama, Effect of coronal temperature on the scale of solar chromospheric jets. ApJL 812, L30 (2015). https://doi.org/10.1088/2041-8205/812/2/L30.1509.06677

    ADS  Article  Google Scholar 

  26. H. Iijima, T. Yokoyama, A three-dimensional magnetohydrodynamic simulation of the formation of solar chromospheric jets with twisted magnetic field lines. ApJ 848, 38 (2017). https://doi.org/10.3847/1538-4357/aa8ad1.1709.01522

    ADS  Article  Google Scholar 

  27. T. Inoue, Inutsuka Si, Formation of turbulent and magnetized molecular clouds via accretion flows of H I clouds. ApJ 759, 35 (2012). https://doi.org/10.1088/0004-637X/759/1/35.1205.6217

    ADS  Article  Google Scholar 

  28. N. Ishiguro, K. Kusano, Double arc instability in the solar corona. ApJ 843, 101 (2017). https://doi.org/10.3847/1538-4357/aa799b.1706.06112

    ADS  Article  Google Scholar 

  29. M. Iwamoto, T. Amano, M. Hoshino, Y. Matsumoto, Persistence of precursor waves in two-dimensional relativistic shocks. ApJ 840, 52 (2017). https://doi.org/10.3847/1538-4357/aa6d6f.1704.04411

    ADS  Article  Google Scholar 

  30. R. Kano, J. Trujillo Bueno, A. Winebarger et al., Discovery of scattering polarization in the hydrogen Ly\(\alpha\) line of the solar disk radiation. ApJL 839, L10 (2017). https://doi.org/10.3847/2041-8213/aa697f.1704.03228

    ADS  Article  Google Scholar 

  31. T. Kawashima, Y. Matsumoto, R. Matsumoto, A possible time-delayed brightening of the Sgr A* accretion flow after the pericenter passage of the G2 cloud. PASJ 69, 43 (2017). https://doi.org/10.1093/pasj/psx015.1702.07903

    ADS  Article  Google Scholar 

  32. J.A. Klimchuk, Key aspects of coronal heating. Philos. Trans. R. Soc. Lond. Ser. A 373, 20140256 (2015). https://doi.org/10.1098/rsta.2014.0256,1410.5660

    ADS  Article  Google Scholar 

  33. K. Kusano, Y. Bamba, T.T. Yamamoto, Y. Iida, S. Toriumi, A. Asai, Magnetic field structures triggering solar flares and coronal mass ejections. ApJ 760, 31 (2012). https://doi.org/10.1088/0004-637X/760/1/31.1210.0598

    ADS  Article  Google Scholar 

  34. B.R. Lee, Magnetic reconnection. Plasma Science and Technology (2018). In preparation

  35. H. Li, The Lyman-\(\alpha\) solar telescope (LST) for the ASO-S mission. in IAU Symposium Solar and Stellar Flares and their Effects on Planets, vol. 320, ed. by A.G. Kosovichev, S.L. Hawley, P. Heinzel, pp. 436–438 (2016), https://doi.org/10.1017/S1743921316000533

    Article  Google Scholar 

  36. J. Li, W. Zhong, Summary of magnetic fusion plasma physics in 1st AAPPS-DPP meeting. Rev. Mod. Plasma Phys. 2, 3 (2018). https://doi.org/10.1007/s41614-018-0015-8

    ADS  Article  Google Scholar 

  37. R.P. Lin, WIND observations of suprathermal electrons in the interplanetary medium. SSR 86, 61–78 (1998). https://doi.org/10.1023/A:1005048428480

    ADS  Article  Google Scholar 

  38. M. Machida, K.E. Nakamura, T. Kudoh, T. Akahori, Y. Sofue, R. Matsumoto, Dynamo activities driven by magnetorotational instability and the parker instability in galactic gaseous disks. ApJ 764, 81 (2013). https://doi.org/10.1088/0004-637X/764/1/81.1301.1414

    ADS  Article  Google Scholar 

  39. H. Maehara, T. Shibayama, S. Notsu et al., Superflares on solar-type stars. Nature 485, 478–481 (2012). https://doi.org/10.1038/nature11063

    ADS  Article  Google Scholar 

  40. S.F. Martin, Conditions for the formation and maintenance of filaments (Invited Review). Sol. Phys. 182, 107–137 (1998). https://doi.org/10.1023/A:1005026814076

    ADS  Article  Google Scholar 

  41. S.F. Martin, R. Bilimoria, P.W. Tracadas, Magnetic field configurations basic to filament channels and filaments. in: NATO Advanced Science Institutes (ASI) Series C, NATO Advanced Science Institutes (ASI) Series C, vol 433, ed. by R.J. Rutten, C.J. Schrijver (1994), p. 303

  42. Y. Masada, T. Sano, Spontaneous formation of surface magnetic structure from large-scale dynamo in strongly stratified convection. ApJL 822, L22 (2016). https://doi.org/10.3847/2041-8205/822/2/L22.1604.05374

    ADS  Article  Google Scholar 

  43. Y. Masada, T. Sano, The compression effect. ApJ (2018). In preparation

  44. Y. Matsumoto, Y. Asahina, Y. Kudoh, T. Kawashima, J. Matsumoto, H.R. Takahashi, T. Minoshima, S. Zenitani, T. Miyoshi, R. Matsumoto, Magnetohydrodynamic Simulation Code CANS+: Assessments and Applications. ArXiv e-prints 1611, 01775 (2016)

    Google Scholar 

  45. Y. Matsumoto, T. Amano, T.N. Kato, M. Hoshino, Electron surfing and drift accelerations in a Weibel-dominated high-mach-number shock. Phys. Rev. Lett. 119(10), 105101 (2017). https://doi.org/10.1103/PhysRevLett.119.105101

    Article  Google Scholar 

  46. D.B. Melrose, Rethinking the solar flare paradigm. Plasma Sci. Tech. 20, 074003 (2018). (1803.10389)

    Article  Google Scholar 

  47. J. Muhamad, K. Kusano, S. Inoue, D. Shiota, Magnetohydrodynamic simulations for studying solar flare trigger mechanism. ApJ 842, 86 (2017). https://doi.org/10.3847/1538-4357/aa750e.1706.07153

    ADS  Article  Google Scholar 

  48. T.J. Okamoto, P. Antolin, B. De Pontieu, H. Uitenbroek, T. Van Doorsselaere, T. Yokoyama, Resonant absorption of transverse oscillations and associated heating in a solar prominence. I. Observational aspects. ApJ 809, 71 (2015). https://doi.org/10.1088/0004-637X/809/1/71.1506.08965

    ADS  Article  Google Scholar 

  49. Y. Ouyang, Y.H. Zhou, P.F. Chen, C. Fang, Chirality and magnetic configurations of solar filaments. ApJ 835, 94 (2017). https://doi.org/10.3847/1538-4357/835/1/94.1612.01054

    ADS  Article  Google Scholar 

  50. A. Pouquet, U. Frisch, J. Leorat, Strong MHD helical turbulence and the nonlinear dynamo effect. J. Fluid Mech. 77, 321–354 (1976). https://doi.org/10.1017/S0022112076002140

    ADS  Article  MATH  Google Scholar 

  51. D. Prasad, P. Sharma, A. Babul, Cool core cycles: cold gas and AGN jet feedback in cluster cores. ApJ 811, 108 (2015). https://doi.org/10.1088/0004-637X/811/2/108.1504.02215

    ADS  Article  Google Scholar 

  52. D. Prasad, P. Sharma, A. Babul, AGN jet-driven stochastic cold accretion in cluster cores. MNRAS 471, 1531–1542 (2017). https://doi.org/10.1093/mnras/stx1698.1611.02710

    ADS  Article  Google Scholar 

  53. M. Ryutova, T. Berger, Z. Frank, T. Tarbell, A. Title, Observation of plasma instabilities in quiescent prominences. Sol. Phys. 267, 75–94 (2010). https://doi.org/10.1007/s11207-010-9638-9

    ADS  Article  Google Scholar 

  54. H. Sano, T. Tanaka, K. Torii, T. Fukuda, S. Yoshiike, J. Sato, H. Horachi, T. Kuwahara, T. Hayakawa, H. Matsumoto, T. Inoue, R. Yamazaki, S. Inutsuka, A. Kawamura, K. Tachihara, H. Yamamoto, T. Okuda, N. Mizuno, T. Onishi, A. Mizuno, Y. Fukui, Non-thermal X-Rays and interstellar gas toward the \(\gamma\)-Ray supernova remnant RX J1713.7-3946: evidence for X-ray enhancement around CO and H I clumps. ApJ 778, 59 (2013). https://doi.org/10.1088/0004-637X/778/1/59,1304.7722

    ADS  Article  Google Scholar 

  55. N. Seehafer, Electric current helicity in the solar atmosphere. Sol. Phys. 125, 219–232 (1990). https://doi.org/10.1007/BF00158402

    ADS  Article  Google Scholar 

  56. J. Seough, Y. Nariyuki, P.H. Yoon, S. Saito, Strahl formation in the solar wind electrons via whistler instability. ApJL 811, L7 (2015). https://doi.org/10.1088/2041-8205/811/1/L7

    ADS  Article  Google Scholar 

  57. Y. Shen, Y. Liu, Y.D. Liu, P.F. Chen, J. Su, Z. Xu, Z. Liu, Fine magnetic structure and origin of counter-streaming mass flows in a quiescent solar prominence. ApJL 814, L17 (2015). https://doi.org/10.1088/2041-8205/814/1/L17.1511.02489

    ADS  Article  Google Scholar 

  58. K. Shibata, T. Magara, Solar flares: magnetohydrodynamic processes. Living Rev. Sol. Phys. 8, 6 (2011). https://doi.org/10.12942/lrsp-2011-6

    ADS  Article  Google Scholar 

  59. K. Shibata, Y. Ishido, L.W. Acton et al., Observations of X-ray jets with the YOHKOH Soft X-ray Telescope. PASJ 44, L173–L179 (1992)

    ADS  Article  Google Scholar 

  60. K. Shibata, T. Nakamura, T. Matsumoto et al., Chromospheric anemone jets as evidence of ubiquitous reconnection. Science 318, 1591 (2007). https://doi.org/10.1126/science.1146708.0810.3974

    ADS  Article  Google Scholar 

  61. K. Shibata, H. Isobe, A. Hillier, A.R. Choudhuri, H. Maehara, T.T. Ishii, T. Shibayama, S. Notsu, Y. Notsu, T. Nagao, S. Honda, D. Nogami, Can superflares occur on our sun? PASJ 65, 49 (2013). https://doi.org/10.1093/pasj/65.3.49,1212.1361

    ADS  Article  Google Scholar 

  62. J. Shimoda, Solar dynamo. ApJ. (2018) In preparation

  63. Y. Shoji, R. Yamazaki, S. Tomita et al., Toward the generation of magnetized collisionless shocks with high-power lasers. Plasma and Fusion Res. 11(2), 3401031 (2016). https://doi.org/10.1585/pfr.11.3401031

    ADS  Article  Google Scholar 

  64. P.A. Sturrock, Maximum energy of semi-infinite magnetic field configurations. ApJ 380, 655–659 (1991). https://doi.org/10.1086/170620

    ADS  Article  Google Scholar 

  65. H.R. Takahashi, K. Ohsuga, General relativistic radiation MHD simulations of supercritical accretion onto a magnetized neutron star: modeling of ultraluminous X-ray pulsars. ApJL 845, L9 (2017). https://doi.org/10.3847/2041-8213/aa8222.1707.07356

    ADS  Article  Google Scholar 

  66. H.R. Takahashi, K. Ohsuga, T. Kawashima, Y. Sekiguchi, Formation of overheated regions and truncated disks around black holes: three-dimensional general relativistic radiation-magnetohydrodynamics simulations. ApJ 826, 23 (2016). https://doi.org/10.3847/0004-637X/826/1/23.1605.04992

    ADS  Article  Google Scholar 

  67. M. Takamoto, A. Lazarian, Compressible relativistic magnetohydrodynamic turbulence in magnetically dominated plasmas and implications for a strong-coupling regime. ApJL 831, L11 (2016). https://doi.org/10.3847/2041-8205/831/2/L11.1610.01373

    ADS  Article  Google Scholar 

  68. M. Takamoto, T. Inoue, A. Lazarian, Turbulent reconnection in relativistic plasmas and effects of compressibility. ApJ 815, 16 (2015). https://doi.org/10.1088/0004-637X/815/1/16.1509.07703

    ADS  Article  Google Scholar 

  69. S. Takeshige, H. Takahashi, K. Shibata, The compression effect. ApJ (2018). In preparation

  70. B. Tan, C. Tan, Microwave quasi-periodic pulsation with millisecond bursts in a solar flare on 2011 august 9. ApJ 749, 28 (2012). https://doi.org/10.1088/0004-637X/749/1/28,1202.1578

    ADS  Article  Google Scholar 

  71. J. Tao, L. Wang, Q. Zong, G. Li, C.S. Salem, R.F. Wimmer-Schweingruber, J. He, C. Tu, S.D. Bale, Quiet-time suprathermal ( 0.1-1.5 keV) electrons in the solar wind. ApJ 820, 22 (2016). https://doi.org/10.3847/0004-637X/820/1/22

    ADS  Article  Google Scholar 

  72. H. Tian, E.E. DeLuca, S.R. Cranmer et al., Prevalence of small-scale jets from the networks of the solar transition region and chromosphere. Science 346(27), 1255711 (2014). https://doi.org/10.1126/science.1255711.1410.6143

    Article  Google Scholar 

  73. K. Tomida, S. Okuzumi, M.N. Machida, Radiation magnetohydrodynamic simulations of protostellar collapse: nonideal magnetohydrodynamic effects and early formation of circumstellar disks. ApJ 801, 117 (2015). https://doi.org/10.1088/0004-637X/801/2/117.1501.04102

    ADS  Article  Google Scholar 

  74. K. Tomida, M.N. Machida, T. Hosokawa, Y. Sakurai, C.H. Lin, Grand-design spiral arms in a young forming circumstellar disk. ApJL 835, L11 (2017). https://doi.org/10.3847/2041-8213/835/1/L11.1611.09361

    ADS  Article  Google Scholar 

  75. S. Tomita, Y. Ohira, Weibel instability driven by spatially anisotropic density structures. ApJ 825, 103 (2016). https://doi.org/10.3847/0004-637X/825/2/103.1606.03213

    ADS  Article  Google Scholar 

  76. T. Umeda, Y. Kidani, S. Matsukiyo, R. Yamazaki, Microinstabilities at perpendicular collisionless shocks: a comparison of full particle simulations with different ion to electron mass ratio. Phys. Plasmas 19(4), 042109 (2012). https://doi.org/10.1063/1.3703319,1204.2539

    ADS  Article  Google Scholar 

  77. T. Umeda, Y. Kidani, S. Matsukiyo, R. Yamazaki, Dynamics and microinstabilities at perpendicular collisionless shock: a comparison of large-scale two-dimensional full particle simulations with different ion to electron mass ratio. Phys. Plasmas 21(2), 022102 (2014). https://doi.org/10.1063/1.4863836.1401.5903

    ADS  Article  Google Scholar 

  78. Y. Voitenko, J. de Keyser, Turbulent spectra and spectral kinks in the transition range from MHD to kinetic Alfvén turbulence. Nonlinear Process. Geophys. 18, 587–597 (2011). https://doi.org/10.5194/npg-18-587-2011.1105.1941

    ADS  Article  Google Scholar 

  79. L. Wang, L. Yang, J. He et al., Solar wind 20–200 keV superhalo electrons at quiet times. ApJL 803, L2 (2015). https://doi.org/10.1088/2041-8205/803/1/L2

    ADS  Article  Google Scholar 

  80. Q.D. Wang, M.A. Nowak, S.B. Markoff et al., Dissecting X-ray-emitting gas around the center of our galaxy. Science 341, 981–983 (2013). https://doi.org/10.1126/science.1240755,1307.5845

    ADS  Article  Google Scholar 

  81. D.F. Webb, T.A. Howard, Coronal mass ejections: observations. Living Rev. Sol. Phys. 9, 3 (2012). https://doi.org/10.12942/lrsp-2012-3

    ADS  Article  Google Scholar 

  82. O.C. Wilson, Chromospheric variations in main-sequence stars. ApJ 226, 379–396 (1978). https://doi.org/10.1086/156618

    ADS  Article  Google Scholar 

  83. D.J. Wu, L. Chen, Excitation of Kinetic Alfvén waves by density striation in magneto-plasmas. ApJ 771, 3 (2013). https://doi.org/10.1088/0004-637X/771/1/3

    ADS  Article  Google Scholar 

  84. L. Xiang, D.J. Wu, L. Chen, Excitation of Ion cyclotron waves by ion and electron beams in compensated-current system. ApJ 857, 108 (2018). https://doi.org/10.3847/1538-4357/aab662

    ADS  Article  Google Scholar 

  85. H. Xie, M.S. Madjarska, B. Li, Z. Huang, L. Xia, T. Wiegelmann, H. Fu, C. Mou, The plasma parameters and geometry of cool and warm active region loops. ApJ 842, 38 (2017). https://doi.org/10.3847/1538-4357/aa7415.1705.02564

    ADS  Article  Google Scholar 

  86. F. Yuan, R. Narayan, Hot accretion flows around black holes. ARAA 52, 529–588 (2014). https://doi.org/10.1146/annurev-astro-082812-141003.1401.0586

    ADS  Article  Google Scholar 

  87. F. Yuan, M. Wu, D. Bu, Numerical simulation of hot accretion flows. I. A large radial dynamical range and the density profile of Accretion Flow. ApJ 761, 129 (2012). https://doi.org/10.1088/0004-637X/761/2/129,1206.4157

    ADS  Article  Google Scholar 

  88. F. Yuan, Z. Gan, R. Narayan, A. Sadowski, D. Bu, X.N. Bai, Numerical simulation of hot accretion flows. III. Revisiting wind properties using the trajectory approach. ApJ 804, 101 (2015). https://doi.org/10.1088/0004-637X/804/2/101,1501.01197

    ADS  Article  Google Scholar 

  89. M. Zhang, Y. Fan, Solar dynamo. ApJ (2018). In preparation

  90. J.S. Zhao, Y. Voitenko, D.J. Wu, J. De Keyser, Nonlinear Generation of kinetic-scale waves by magnetohydrodynamic Alfvén waves and nonlocal spectral transport in the solar wind. ApJ 785, 139 (2014). https://doi.org/10.1088/0004-637X/785/2/139

    ADS  Article  Google Scholar 

  91. J.Y. Zhong, J. Lin, Y.T. Li et al., Relativistic electrons produced by reconnecting electric fields in a laser-driven bench-top solar flare. ApJS 225, 30 (2016). https://doi.org/10.3847/0067-0049/225/2/30

    ADS  Article  Google Scholar 

  92. J.Z. Zhu, Chirality, extended magnetohydrodynamics statistics and topological constraints for solar wind turbulence. MNRAS 470, L87–L91 (2017). https://doi.org/10.1093/mnrasl/slx075

    ADS  Article  Google Scholar 

  93. P. Zou, C. Fang, P.F. Chen, K. Yang, W. Cao, Magnetic separatrix as the source region of the plasma supply for an active-region filament. ApJ 836, 122 (2017). https://doi.org/10.3847/1538-4357/836/1/1221701.01526

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Prof. M. Kikuchi for the invitation to write this summary paper, and to the referees for their detailed suggestions. PFC was supported by the Chinese foundations (NSFC 11533005 and BRA2017359).

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. F. Chen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, P.F., Shibata, K. & Matsumoto, R. Recent progress in Asia-Pacific solar physics and astrophysics. Rev. Mod. Plasma Phys. 2, 5 (2018). https://doi.org/10.1007/s41614-018-0017-6

Download citation

Keywords

  • Solar physics
  • Astrophysics
  • Laboratory experiments