Skip to main content
Log in

Kinetic instabilities in the solar wind driven by temperature anisotropies

  • Review Paper
  • Published:
Reviews of Modern Plasma Physics Aims and scope Submit manuscript

Abstract

The present paper comprises a review of kinetic instabilities that may be operative in the solar wind, and how they influence the dynamics thereof. The review is limited to collective plasma instabilities driven by the temperature anisotropies. To limit the scope even further, the discussion is restricted to the temperature anisotropy-driven instabilities within the model of bi-Maxwellian plasma velocity distribution function. The effects of multiple particle species or the influence of field-aligned drift will not be included. The field-aligned drift or beam is particularly prominent for the solar wind electrons, and thus ignoring its effect leaves out a vast portion of important physics. Nevertheless, for the sake of limiting the scope, this effect will not be discussed. The exposition is within the context of linear and quasilinear Vlasov kinetic theories. The discussion does not cover either computer simulations or data analyses of observations, in any systematic manner, although references will be made to published works pertaining to these methods. The scientific rationale for the present analysis is that the anisotropic temperatures associated with charged particles are pervasively detected in the solar wind, and it is one of the key contemporary scientific research topics to correctly characterize how such anisotropies are generated, maintained, and regulated in the solar wind. The present article aims to provide an up-to-date theoretical development on this research topic, largely based on the author’s own work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  • M.L. Adrian, A.F. Viñas, P.S. Moya, D.E. Wendel, Solar wind magnetic fluctuations and electron non-thermal temperature anisotropy: survey of WIND-SWE-VEIS observations. Astrophys. J. 833, 49 (2016)

    Article  ADS  Google Scholar 

  • N. Ahmadi, K. Germaschewski, J. Raeder, Effects of electron temperature anisotropy on proton mirror evolution. J. Geophys. Res. 121, 5350–5365 (2016)

    Article  Google Scholar 

  • B.J. Anderson, S.A. Fuselier, Magnetic pulsations from 0.1 to 4.0 Hz and associated plasma properties in the Earth’s subsolar magnetosheath and plasma depletion layer. J. Geophys. Res. 98, 1461–1479 (1993)

    Article  ADS  Google Scholar 

  • B.J. Anderson, S.A. Fuselier, Response of thermal ions to electromagnetic ion cyclotron waves. J. Geophys. Res. 99, 19413–19425 (1994)

    Article  ADS  Google Scholar 

  • B.J. Anderson, S.A. Fuselier, D. Murr, Electromagnetic ion cyclotron waves observed in the plasma depletion layer. Geophys. Res. Lett. 18, 1955–1958 (1991)

    Article  ADS  Google Scholar 

  • B.J. Anderson, S.A. Fuselier, S.P. Gary, R.E. Denton, Magnetic spectral signatures in the Earth’s magnetosheath and plasma depletion layer. J. Geophys. Res. 99, 5877–5891 (1994)

    Article  ADS  Google Scholar 

  • B.J. Anderson, R.E. Denton, G. Ho, D.C. Hamilton, S.A. Fuselier, R.J. Strangeway, Observational test of local proton cyclotron instability in the Earth’s magnetosphere. J. Geophys. Res. 101, 21527–21543 (1996)

    Article  ADS  Google Scholar 

  • J.A. Araneda, H. Astudillo, E. Marsch, Interactions of Alfvén-cyclotron waves with ions in the solar wind. Space Sci. Rev. 172, 361–372 (2012)

    Article  ADS  Google Scholar 

  • P. Astfalk, F. Jenko, LEOPARD: A grid-based dispersion relation solver for arbitrary gyrotropic distributions. J. Geophys. Res. 122, 89–101 (2017). doi:10.1002/2016JA023522

    Article  Google Scholar 

  • S.D. Bale, J.C. Kasper, G.G. Howes, E. Quataert, C. Salem, D. Sundkvist, Magnetic fluctuation power near proton temperature anisotropy instability threshold in the solar wind. Phys. Rev. Lett. 103, 211101 (2009)

    Article  ADS  Google Scholar 

  • S.J. Bame, J.R. Asbridge, W.C. Feldman, S.P. Gary, M.D. Montgomery, Evidence for local ion heating in solar wind high speed streams. Geophys. Res. Lett. 2, 373–375 (1975)

    Article  ADS  Google Scholar 

  • W. Baumjohann, R.A. Treumann, Basic Space Plasma Physics (Imperial College Press, London, 1997)

    MATH  Google Scholar 

  • J. Bortnik, N. Omidi, L. Chen, R.M. Thorne, R.B. Horne, Saturation characteristics of electromagnetic ion cyclotron waves. J. Geophys. Res. 116, A09219 (2011). doi:10.1029/2011JA016638

    ADS  Google Scholar 

  • S. Bourouaine, E. Marsch, F.M. Neubauer, Correlations between the proton temperature anisotropy and transverse high-frequency waves in the solar wind. Geophys. Res. Lett. 37, L14104 (2010). doi:10.1029/2010GL043697

    Article  ADS  Google Scholar 

  • S. Bourouaine, D. Verscharen, B.D.G. Chandran, B.A. Maruca, J.C. Kasper, Limits on alpha particle temperature anisotropy and differential flow from kinetic instabilities: solar wind observations. Astrophys. J. Lett. 777, L3 (2013)

    Article  ADS  Google Scholar 

  • F. Califano, P. Hellinger, E. Kuztnetsov, T. Passot, P.L. Sulem, P.M. Trávníček, Nonlinear mirror mode dynamics: simulations and modeling. J. Geophys. Res. 113, A08219 (2008). doi:10.1029/2007JA012898

    ADS  Google Scholar 

  • E. Camporeale, Nonmodal linear theory for space plasmas. Space Sci. Rev. 172, 397–409 (2012)

    Article  ADS  Google Scholar 

  • E. Camporeale, D. Burgess, Electron firehose instability: kinetic linear theory and two-dimensional particle-in-cell simulations. J. Geophys. Res. 113, A07107 (2008). doi:10.1029/2008JA013043

    ADS  Google Scholar 

  • E. Camporeale, D. Burgess, Electron temperature anisotropy in an expanding plasma: particle-in-cell simulations. Astrophys. J. 710, 1848–1856 (2010)

    Article  ADS  Google Scholar 

  • B.D.G. Chandran, T.J. Dennis, E. Quataert, S.D. Bale, Incorporating kinetic physics into a two-fluid solar-wind model with temperature anisotropy and low-frequency Alfvén-wave turbulence. Astrophys. J. 743, 197 (2011). doi:10.1088/0004-637X/743/2/197

    Article  ADS  Google Scholar 

  • R.C. Davidson, J.M. Ogden, Electromagnetic ion cyclotron instability driven by ion energy anisotropy in high-beta plasmas. Phys. Fluids 18, 1045–1050 (1975)

    Article  ADS  Google Scholar 

  • R.E. Denton, B.J. Anderson, S.P. Gary, S.A. Fuselier, Bounded anisotropy fluid model for ion temperatures. J. Geophys. Res. 99, 11225–11241 (1994)

    Article  ADS  Google Scholar 

  • A. Eviatar, M. Schulz, Ion-temperature anisotropies and the structure of the solar wind. Planet. Space Sci. 18, 321–332 (1970)

    Article  ADS  Google Scholar 

  • S.A. Fuselier, B.J. Anderson, S.P. Gary, R.E. Denton, Inverse correlations between the ion temperature anisotropy and plasma beta in the Earth’s quasi-parallel magnetosheath. J. Geophys. Res. 99, 14931–14936 (1994)

    Article  ADS  Google Scholar 

  • S.P. Gary, Theory of Space Plasma Microinstabilities (Cambridge University Press, Cambridge, 1993)

    Book  Google Scholar 

  • S.P. Gary, K. Nishimura, Resonant electron firehose instability: particle-in-cell simulations. Phys. Plasmas 10, 3571–3576 (2003)

    Article  ADS  Google Scholar 

  • S.P. Gary, S. Saito, Particle-in-cell simulations of Alfvén-cyclotron wave scattering: proton velocity distributions. J. Geophys. Res. 108(A5), 1194 (2003). doi:10.1029/2002JA009824

    Article  Google Scholar 

  • S.P. Gary, J. Wang, Whistler instability: electron anisotropy upper bound. J. Geophys. Res. 101, 10749–10754 (1996)

    Article  ADS  Google Scholar 

  • S.P. Gary, D. Winske, Simulations of ion cyclotron anisotropy instabilities in the terrestrial magnetosheath. J. Geophys. Res. 98, 9171–9179 (1993)

    Article  ADS  Google Scholar 

  • S.P. Gary, M.D. Montgomery, W.C. Feldman, D.W. Forslund, Proton temperature anisotropy instabilities in the solar wind. J. Geophys. Res. 81, 1241–1246 (1976)

    Article  ADS  Google Scholar 

  • S.P. Gary, B.J. Anderson, R.E. Denton, S.A. Fuselier, M.E. McKean, D. Winske, Ion anisotropies in the magnetosheath. Geophys. Res. Lett. 20, 1767–1770 (1993a)

    Article  ADS  Google Scholar 

  • S.P. Gary, S.A. Fuselier, B.J. Anderson, Ion anisotropy instabilities in the magnetosheath. J. Geophys. Res. 98, 1481–1488 (1993b)

    Article  ADS  Google Scholar 

  • S.P. Gary, M.E. McKean, D. Winske, Ion cyclotron anisotropy instabilities in the magnetosheath: theory and simulations. J. Geophys. Res. 98, 3963–3971 (1993c)

    Article  ADS  Google Scholar 

  • S.P. Gary, M.A. Lee, The ion cyclotron anisotropy instability and the inverse correlation between proton anisotropy and proton beta. J. Geophys. Res. 99, 11297–11301 (1994a)

    Article  ADS  Google Scholar 

  • S.P. Gary, B.J. Anderson, R.E. Denton, S.A. Fuselier, M.E. McKean, A limited closure relation for anisotropic plasmas from the Earth’s magnetosheath. Phys. Plasmas 1, 1676–1683 (1994b)

    Article  ADS  Google Scholar 

  • S.P. Gary, M.E. McKean, D. Winske, B.J. Anderson, R.E. Denton, S.A. Fuselier, The proton cyclotron instability and the anisotropy/\(\beta\) inverse correlation. J. Geophys. Res. 99, 5903–5914 (1994c)

    Article  ADS  Google Scholar 

  • S.P. Gary, P.D. Convery, R.E. Denton, S.A. Fuselier, B.J. Anderson, Proton and helium cyclotron anisotropy instability thresholds in the magnetosheath. J. Geophys. Res. 99, 5915–5921 (1994d)

    Article  ADS  Google Scholar 

  • S.P. Gary, M.F. Thomsen, L. Yin, D. Winske, Electromagnetic proton cyclotron instability: interactions with magnetospheric protons. J. Geophys. Res. 100, 21961–21972 (1995)

    Article  ADS  Google Scholar 

  • S.P. Gary, M.E. McKean, D. Winske, Proton temperature anisotropy in the magnetosheath: hybrid simulations. Geophys. Res. Lett. 23, 2887–2890 (1996a)

    Article  ADS  Google Scholar 

  • S.P. Gary, V.M. Vazquez, D. Winske, Electromagnetic proton cyclotron instability: proton velocity distributions. J. Geophys. Res. 101, 13327–13333 (1996b)

    Article  ADS  Google Scholar 

  • S.P. Gary, J. Wang, D. Winske, S.A. Fuselier, Proton temperature anisotropy upper bound. J. Geophys. Res. 102, 27159–27169 (1997)

    Article  ADS  Google Scholar 

  • S.P. Gary, H. Li, S. O’Rouke, D. Winske, Proton resonant firehose instability: temperature anisotropy and fluctuating field constraints. J. Geophys. Res. 103, 14567 (1998)

    Article  ADS  Google Scholar 

  • S.P. Gary, R.M. Skoug, J.T. Steinberg, C.W. Smith, Proton temperature anisotropy constraint in the solar wind: ACE observations. Geophys. Res. Lett. 28, 2759–2762 (2001a)

    Article  ADS  Google Scholar 

  • S.P. Gary, Y. Lin, D. Winske, L. Ofman, Electromagnetic heavy ion cyclotron instability: anisotropy constraint in the solar corona. J. Geophys. Res. 106, 10715–10722 (2001b)

    Article  ADS  Google Scholar 

  • S.P. Gary, B.E. Goldstein, M. Neugebauer, Signatures of wave-ion interactions in the solar wind: Ulysses observations. J. Geophys. Res. 107(A8), 1169 (2002). doi:10.1029/2001JA000269

    Article  Google Scholar 

  • S.P. Gary, B. Lavraud, M.F. Thomsen, B. Lefebvre, S.J. Schwartz, Electron anisotropy constraint in the magnetosheath: cluster observations. Geophys. Res. Lett. 32, L13109 (2005)

    Article  ADS  Google Scholar 

  • V. Génot, E. Budnik, P. Hellinger, T. Passot, G. Belmont, P.M. Trávníček, P.-L. Sulem, E. Lucek, I. Dandouras, Mirror structures above and below the linear instability threshold: cluster observations, fluid model and hybrid simulations. Ann. Geophys. 27, 601–615 (2009)

    Article  ADS  Google Scholar 

  • F. Hadi, M.F. Bashir, A. Qamar, P.H. Yoon, R. Schlickeiser, On the ordinary mode instability for low beta plasmas. Phys. Plasmas 21, 052111 (2014)

    Article  ADS  Google Scholar 

  • A. Hasegawa, Instabilities in the Magnetosphere. Rev. Geophys. Space Phys. 9, 703–772 (1971)

    Article  ADS  Google Scholar 

  • P. Hellinger, Proton fire hose instabilities in the expanding solar wind. J. Plasma Phys. 83, 70583015 (2017)

    Article  Google Scholar 

  • P. Hellinger, H. Matsumoto, New kinetic instability: oblique Alfvén fire hose. J. Geophys. Res. 105, 10519–10526 (2000)

    Article  ADS  Google Scholar 

  • P. Hellinger, H. Matsumoto, Nonlinear competition between the whistler and Alfvén fire hoses. J. Geophys. Res. 106, 13215–13218 (2001)

    Article  ADS  Google Scholar 

  • P. Hellinger, P.M. Trávníček, Oblique proton fire hose instability in the expanding solar wind: hybrid simulations. J. Geophys. Res. 113, A10109 (2008). doi:10.1029/2008JA013416

    Article  ADS  Google Scholar 

  • P. Hellinger, P.M. Trávníček, Proton core-beam system in the expanding solar wind: hybrid simulations. J. Geophys. Res. 116, A11101 (2011). doi:10.1029/2011JA016940

    Article  ADS  Google Scholar 

  • P. Hellinger, P.M. Trávníček, Proton and alpha particles in the expanding solar wind: hybrid simulations. J. Geophys. Res. 118, 5421–5430 (2013)

    Article  Google Scholar 

  • P. Hellinger, P.M. Trávníček, Solar wind protons at 1 AU: trends and bounds, constraints and correlations. Astrophys. J. Lett. 784, L15 (2014)

    Article  ADS  Google Scholar 

  • P. Hellinger, P.M. Trávníček, Proton temperature-anisotropy-driven instabilities in weakly collisional plasmas: hybrid simulations. J. Plasma Phys. 81, 305810103 (2015)

    Article  Google Scholar 

  • P. Hellinger, P. Trávníček, A. Mangeney, R. Grappin, Hybrid simulations of the expanding solar wind: temperatures and drift velocities. Geophys. Res. Lett. 30(5), 1211 (2003). doi:10.1029/2002GL016409

    Article  ADS  Google Scholar 

  • P. Hellinger, E.A. Kuznetsov, T. Passot, P.L. Sulem, P.M. Trávníček, Mirror instability: from quasi-linear diffusion to coherent structures. Geophys. Res. Lett. 36, L06103 (2009). doi:10.1029/2008GL036805

    Article  ADS  Google Scholar 

  • P. Hellinger, P. Trávníček, J.C. Kasper, A.J. Lazarus, Solar wind proton temperature anisotropy: linear theory and WIND/SWE observations. Geophys. Res. Lett. 33, L09101 (2006). doi:10.1029/2006GL025925

    Article  ADS  Google Scholar 

  • P. Hellinger, L. Matteini, Š. Štverák, P.M. Trávníček, E. Marsch, Heating and cooling of protons in the fast solar wind between 0.3 and 1 AU: Helios revisited. J. Geophys. Res. 116, A09105 (2011). doi:10.1029/2011JA016674

    ADS  Google Scholar 

  • P. Hellinger, P.M. Trávníček, Š. Štverák, L. Matteini, M. Velli, Proton thermal energetics in the solar wind: Helios reloaded. J. Geophys. Res. 118, 1351–1365 (2013)

    Article  Google Scholar 

  • P. Hellinger, P.M. Trávníček, V.K. Decyk, D. Schriver, Oblique electron fire hose instability: particle-in-cell simulations. J. Geophys. Res. 119, 59–68 (2014)

    Article  Google Scholar 

  • J.V. Hollweg, Some physical processes in the solar wind. J. Geophys. Res. 16, 689–720 (1978)

    Google Scholar 

  • P. Hunana, D. Laveder, T. Passot, P.L. Sulem, D. Borgogno, Reduction of compressibility and parallel transfer by Landau damping in turbulent magnetized plasmas. Astrophys. J. 743, 128 (2011). doi:10.1088/0004-637X/743/2/128

    Article  ADS  Google Scholar 

  • P. Hunana, G.P. Zank, M.L. Goldstein, G.M. Webb, L. Adhikari, CGL description revisited. AIP Conf. Proc. 1720, 030002 (2016)

    Article  Google Scholar 

  • P. Hunana, G.P. Zank, On the parallel and oblique firehose instability in fluid models. Astrophys. J. 839, 13 (2017). doi:10.3847/1538-4357/aa64e3

  • A.J. Hundhausen, S.J. Bame, Solar wind thermal anisotropies: Vela 3 and IMP 3. J. Geophys. Res. 72, 5265–5274 (1967)

    Article  ADS  Google Scholar 

  • A.J. Hundhausen, J.R. Asbridge, S.J. Bame, H.E. Gilbert, I.B. Strong, Vela 3 satellite observations of solar wind ions: a preliminary report. J. Geophys. Res. 72, 87–100 (1967a)

    Article  ADS  Google Scholar 

  • A.J. Hundhausen, J.R. Asbridge, S.J. Bame, I.B. Strong, Vela satellite observations of solar wind ions. J. Geophys. Res. 72, 1979–1987 (1967b)

    Article  ADS  Google Scholar 

  • P.A. Isenberg, A self-consistent marginally stable state for parallel ion cyclotron waves. Phys. Plasmas 19, 032116 (2012)

    Article  ADS  Google Scholar 

  • P.A. Isenberg, B.A. Maruca, J.C. Kasper, Self-consistent ion cyclotron anisotropy–beta relation for solar wind protons. Astrophys. J. 773, 164 (2013)

    Article  ADS  Google Scholar 

  • J.R. Jasperse, B. Basu, E.J. Lund, M. Bouhram, Gyrotropic guiding-center fluid theory for turbulent inhomogeneous magnetized plasma. Phys. Plasmas 13, 072903 (2006a). doi:10.1063/1.2220006

    Article  ADS  MathSciNet  Google Scholar 

  • J.R. Jasperse, B. Basu, E.J. Lund, M. Bouhram, Gyrotropic guiding-center fluid theory for the turbulent heating of magnetospheric ions in downward Birkeland current regions. II. Phys. Plasmas 13, 112902 (2006b). doi:10.1063/1.2364475

    Article  ADS  Google Scholar 

  • J.C. Kasper, A.J. Lazarus, S.P. Gary, A. Szabo, Solar wind temperature anisotropies, in Solar Wind Ten: Proceedings of the Tenth International Solar Wind Conference, ed. by M. Velli, R. Bruno, F. Malara (American Institute of Physics, College Park, 2003), pp. 538–541

    Google Scholar 

  • J.C. Kasper, A.J. Lazarus, S.P. Gary, Hot solar-wind helium: direct evidence for local heating by Alfvén-cyclotron dissipation. Phys. Rev. Lett. 101, 261103 (2008)

    Article  ADS  Google Scholar 

  • J.C. Kasper, B.A. Maruca, M.L. Stevens, A. Zaslavsky, Sensitive test for ion-cyclotron resonant heating in the solar wind. Phys. Rev. Lett. 110, 091102 (2013)

    Article  ADS  Google Scholar 

  • C.F. Kennel, F. Engelmann, Velocity space diffusion from weak plasma turbulence in a magnetic field. Phys. Fluids 9, 2377–2388 (1966)

    Article  ADS  Google Scholar 

  • C.F. Kennel, H.E. Petschek, Limit on stably trapped particle fluxes. J. Geophys. Res. 71, 1–28 (1966). doi:10.1029/JZ071i001p00001

  • C.F. Kennel, F.L. Scarf, Thermal anisotropies and electromagnetic instabilities in the solar wind. J. Geophys. Res. 73, 6149–6165 (1968)

    Article  ADS  Google Scholar 

  • C. Lacombe, G. Belmont, Waves in the Earth’s magnetosheath: observations and interpretations. Adv. Space Res. 15, 329–340 (1995)

    Article  ADS  Google Scholar 

  • D. Laveder, L. Marradi, T. Passot, P.L. Sulem, Fluid simulations of mirror constraints on proton temperature anisotropy in solar wind turbulence. Geophys. Res. Lett. 38, L17108 (2011). doi:10.1029/2011GL048874

    Article  ADS  Google Scholar 

  • M. Lazar, The electromagnetic ion-cyclotron instability in bi-kappa distributed plasma. A&A 547, A94 (2012)

    Article  ADS  Google Scholar 

  • M. Lazar, S. Poedts, R. Schlickeiser, Proton firehose instability in bi-kappa distribution plasmas. A&A 534, A116 (2011)

    Article  ADS  Google Scholar 

  • M. Lazar, S. Poedts, R. Schlickeiser, The interplay of Kappa and core populations in the solar wind: electromagnetic electron cyclotron instability. J. Geophys. Res. 119, 9395 (2014)

    Article  Google Scholar 

  • R.P. Lepping, M.H. Acũna, L.F. Burlaga, W.M. Farrell, J.A. Slavin, K.H. Schatten, F. Mariani, N.F. Ness, F.M. Neubauer, Y.C. Whang, J.B. Byrnes, R.S. Kennon, P.V. Panetta, J. Scheifele, E.M. Worley, Space Sci. Rev. 71, 207 (1995)

    Article  ADS  Google Scholar 

  • X. Li, S.R. Habbal, Electron kinetic firehose instability. J. Geophys. Res. 105, 27377–27385 (2000)

    Article  ADS  Google Scholar 

  • G. Livadiotis (ed.), Kappa Distributions. Theory and Applications in Plasmas, 1st edn. (Elsevier, Amsterdam, 2017) (ISBN:9780128046388)

  • M.E. McKean, D. Winske, S.P. Gary, Mirror and ion cyclotron anisotropy instabilities in the magnetosheath. J. Geophys. Res. 97, 19421–19432 (1992)

    Article  ADS  Google Scholar 

  • M.E. McKean, S.P. Gary, D. Winske, Kinetic physics of the mirror instability. J. Geophys. Res. 98, 21313–21321 (1993)

    Article  ADS  Google Scholar 

  • M.E. McKean, D. Winske, S.P. Gary, Two-dimensional simulations of ion anisotropy instabilities in the magnetosheath. J. Geophys. Res. 99, 11141–11153 (1994)

    Article  ADS  Google Scholar 

  • Y.G. Maneva, J.A. Araneda, E. Marsch, Regulation of ion drifts and anisotropies by parametrically unstable finite-amplitude Alfvén-cyclotron waves in the fast solar wind. Astrophys. J. 783, 139 (2014)

    Article  ADS  Google Scholar 

  • Y. Maneva, M. Lazar, A. Viñas, S. Poedts, Mixing the solar wind proton and electron scales: effects of electron temperature anisotropy on the oblique proton firehose instability. Astrophys. J. 832, 64 (2016)

    Article  ADS  Google Scholar 

  • E. Marsch, Helios: evolution of distribution functions 0.3–1 AU. Space Sci. Rev. 172, 23–39 (2012)

    Article  ADS  Google Scholar 

  • E. Marsch, C.-Y. Tu, Heating and acceleration of coronal ions interacting with plasma waves through cyclotron and Landau resonance. J. Geophys. Res. 106, 277–238 (2001)

    ADS  Google Scholar 

  • E. Marsch, K.-H. Mühlhäuser, R. Schwenn, H. Rosenbauer, W. Pilipp, F.M. Neubauer, Solar wind protons: three-dimensional velocity distributions and derived plasma properties measured between 0.3 and 1 AU. J. Geophys. Res. 87, 52–72 (1982)

    Article  ADS  Google Scholar 

  • E. Marsch, X.-Z. Ao, C.-Y. Tu, On the temperature anisotropy of the core part of the proton velocity distribution function in the solar wind. J. Geophys. Res. 109, A04102 (2004). doi:10.1029/2003JA010330

    Article  ADS  Google Scholar 

  • E. Marsch, L. Zhao, C.-Y. Tu, Limits on the core temperature anisotropy of solar wind protons. Ann. Geophys. 24, 2057–2063 (2006)

    Article  ADS  Google Scholar 

  • B.A. Maruca, J.C. Kasper, S.D. Bale, What are the relative roles of heating and cooling in generating solar wind temperature anisotropies? Phys. Rev. Lett. 107, 201101 (2011)

    Article  ADS  Google Scholar 

  • B.A. Maruca, J.C. Kasper, S.D. Bale, Instability-driven limits on helium temperature anisotropy in the solar wind. Astrophys. J. 748, 137 (2012)

    Article  ADS  Google Scholar 

  • L. Matteini, S. Landi, P. Hellinger, M. Velli, Parallel proton fire hose instability in the expanding solar wind: hybrid simulations. J. Geophys. Res. 111, A10101 (2006). doi:10.1029/2006JA011667

    Article  ADS  Google Scholar 

  • L. Matteini, S. Landi, P. Hellinger, F. Pantellini, M. Maksimovic, M. Velli, B.E. Goldstein, E. Marsch, Evolution of the solar wind proton temperature anisotropy from 0.3 to 2.5 AU. Geophys. Res. Lett. 34, L250105 (2007). doi:10.1029/2007GL030920

    Article  Google Scholar 

  • L. Matteini, P. Hellinger, S. Landi, P.M. Trávníček, M. Velli, B.E. Goldstein, E. Marsch, Ion kinetics in the solar wind: coupling global expansion to local microphysics. Space Sci. Rev. 172, 373–396 (2012)

    Article  ADS  Google Scholar 

  • L. Matteini, P. Hellinger, B.E. Goldstein, S. Landi, M. Velli, M. Neugebauer, Signatures of kinetic instabilities in the solar wind. J. Geophys. Res. 118, 2771–2782 (2013)

    Article  Google Scholar 

  • P. Messmer, Temperature isotropization in solar flare plasmas due to the electron firehose instability. A&A 382, 301–311 (2002)

    Article  ADS  Google Scholar 

  • M.J. Michno, M. Lazar, P.H. Yoon, R. Schlickeiser, Effects of electrons on the solar wind proton temperature anisotropy. Astrophys. J. 781, 49 (2014)

    Article  ADS  Google Scholar 

  • M.D. Montgomery, S.J. Bame, A.J. Hundhausen, Solar wind electrons: Vela 4 measurements. J. Geophys. Res. 73, 4999–5003 (1968)

    Article  ADS  Google Scholar 

  • P.S. Moya, V. Muñoz, J. Rogan, J.A. Valdivia, Study of the cascading effect during the acceleration and heating of ions in the solar wind. J. Atmos. Solar-Terr. Phys. 73, 1890–1397 (2011)

    Article  Google Scholar 

  • P.S. Moya, A.F. Viñas, V. Muñoz, J.A. Valdivia, Computational and theoretical study of the wave–particle interaction of protons and waves. Ann. Geophys. 30, 1361–1369 (2012)

    Article  ADS  Google Scholar 

  • P.S. Moya, R. Navarro, A.F. Viñas, V. Muñoz, J.A. Valdivia, Weak turbulence cascading effects in the acceleration and heating of ions in the solar wind. Astrophys. J. 781, 76 (2014)

    Article  ADS  Google Scholar 

  • R.E. Navarro, P.S. Moya, V. Muñoz, J.A. Araneda, A.-F. Viñas, J.A. Valdivia, Solar wind thermally induced magnetic fluctuations. Phys. Rev. Lett. 112, 245001 (2014). doi:10.1103/PhysRevLett.112.245001

    Article  ADS  Google Scholar 

  • R.E. Navarro, V. Muñoz, J. Araneda, A.-F. Viñas, P.S. Moya, J.A. Valdivia, Magnetic Alfvén-cyclotron fluctuations of anisotropic nonthermal plasmas. J. Geophys. Res. 120, 2382–2396 (2015)

    Article  Google Scholar 

  • L. Ofman, A.-F. Viñas, P.S. Moya, Hybrid models of solar wind plasma heating. Ann. Geophys. 29, 1071–1079 (2011)

    Article  ADS  Google Scholar 

  • L. Ofman, A.-F. Viñas, Y. Maneva, Two-dimensional hybrid models of \({\rm H}^+\)-\({\rm He}^{++}\) expanding solar wind plasma heating. J. Geophys. Res. 119, 4223–4238 (2014)

    Article  Google Scholar 

  • K.W. Ogilvie, D.J. Chornay, R.J. Fritzenreiter, R. Hunsaker, J. Keller, J. Lobell, G. Miller, J.D. Scudder, E.C. Sittler Jr., R.B. Torbert, D. Bodet, G. Needell, A.J. Lazarus, J.T. Steinberg, J.H. Tappan, A. Mavretic, E. Gergin, Space Sci. Rev. 71, 55 (1995)

    Article  ADS  Google Scholar 

  • N. Omidi, R.M. Thorne, J. Bortnik, Nonlinear evolution of EMIC waves in a uniform magnetic field: 1. Hybrid simulation. J. Geophys. Res. 115, A12241 (2010). doi:10.1029/2010JA015607

    ADS  Google Scholar 

  • K.T. Osman, W.H. Matthaeus, A. Greco, S. Servidio, Evidence for inhomogeneous heating in the solar wind. Astrophys. J. Lett. 727, L11 (2011)

    Article  ADS  Google Scholar 

  • K.T. Osman, W.H. Matthaeus, B. Hnat, S.C. Chapman, Kinetic signatures and intermittent turbulence in the solar wind plasma. Phys. Rev. Lett. 108, 261103 (2012)

    Article  ADS  Google Scholar 

  • K.T. Osman, W.H. Matthaeus, K.H. Kiyani, B. Hnat, S.C. Chapman, Proton kinetic effects and turbulent energy cascade rate in the solar wind. Phys. Rev. Lett. 111, 201101 (2013)

    Article  ADS  Google Scholar 

  • G. Paesold, A.O. Benz, Electron firehose instability and acceleration of electrons in solar flares. Astron. Astrophys. 351, 741–746 (1999)

    ADS  Google Scholar 

  • F.G.E. Pantellini, S.J. Schwartz, Electron temperature effects in the linear proton mirror instability. J. Geophys. Res. 100, 3539–3549 (1995)

    Article  ADS  Google Scholar 

  • G. Parks, Physics of Space Plasmas: An Introduction, 2nd edn. (Westview Press, Boulder, 2003)

    Google Scholar 

  • T. Passot, P.L. Sulem, Collisionless magnetohydrodynamics with gyrokinetic effects. Phys. Plasmas 14, 082502 (2007). doi:10.1063/1.2751601

    Article  ADS  Google Scholar 

  • T. Passot, P.L. Sulem, P. Hunana, Extending magnetohydrodynamics to the slow dynamics of collisionless plasmas. Phys. Plasmas 19, 082113 (2012)

    Article  ADS  Google Scholar 

  • T.-D. Phan, G. Paschmann, W. Baumjohann, N. Sckopke, H. Lühr, The magnetosheath region adjacent to the dayside magnetopause: AMPTE/IRM observations. J. Geophys. Res. 99, 121–141 (1994)

    Article  ADS  Google Scholar 

  • O.A. Pokhotelov, M.A. Balikhin, H. St-C, K. Alleyne, O.G. Onishchenko, Mirror instability with finite electron temperature effects. J. Geophys. Res. 105, 2393–2401 (2000)

    Article  ADS  Google Scholar 

  • O.A. Pokhotelov, R.A. Treumann, R.Z. Sagdeev, M.A. Balikhin, O.G. Onishchenko, V.P. Pavlenko, I. Sandberg, Linear theory of the mirror instability in non-Maxwellian space plasmas. J. Geophys. Res. 107(A10), 1312 (2002). doi:10.1029/2001JA009125

    Article  Google Scholar 

  • O.A. Pokhotelov, I. Sandberg, R.Z. Sagdeev, R.A. Treumann, O.G. Onishchenko, M.A. Balikhin, V.P. Pavlenko, Slow drift mirror modes in finite electron-temperature plasma: hydrodynamic and kinetic drift mirror instabilities. J. Geophys. Res. 108(A3), 1098 (2003). doi:10.1029/2002JA009651

    Article  Google Scholar 

  • P. Porazik, J.R. Johnson, Linear dispersion relation for the mirror instability in context of the gyrokinetic theory. Phys. Plasmas 20, 104501 (2013a)

    Article  ADS  Google Scholar 

  • P. Porazik, J.R. Johnson, Gyrokinetic particle simulation of nonlinear evolution of mirror instability. J. Geophys. Res. 118, 7211–7218 (2013b)

    Article  Google Scholar 

  • B. Remya, R.V. Reddy, B.T. Tsurutani, G.S. Lakhina, E. Echer, Ion temperature anisotropy instabilities in planetary magnetosheaths. J. Geophys. Res. 118, 785–793 (2013)

    Article  Google Scholar 

  • S. Saeed, P.H. Yoon, M. Sarfraz, M.N.S. Qureshi, Characteristics of heat flux and electromagnetic electron-cyclotron instabilities driven by solar wind electrons. MNRAS 466, 4928–4936 (2017)

    ADS  Google Scholar 

  • A.A. Samsonov, O. Alexandrova, C. Lacombe, M. Maksimovic, S.P. Gary, Proton temperature anisotropy in the magnetosheath: comparison of 3-D MHD modeling with Cluster data. Ann. Geophys. 25, 1157–1173 (2007)

    Article  ADS  Google Scholar 

  • M. Sarfraz, S. Saeed, P.H. Yoon, G. Abbas, H.A. Shah, Macroscopic quasi-linear theory of electromagnetic electron cyclotron instability associated with core and halo solar wind electrons. J. Geophys. Res. 121, 9356–9368 (2016)

    Article  Google Scholar 

  • M. Sarfraz, P.H. Yoon, S. Saeed, G. Abbas, H.A. Shah, Macroscopic quasilinear theory of parallel electron firehose instability associated with solar wind electrons. Phys. Plasmas 24, 012907 (2017)

    Article  ADS  Google Scholar 

  • F.L. Scarf, J.H. Wolfe, R.W. Silva, A plasma instability associated with thermal anisotropies in the solar wind. J. Geophys. Res. 72, 993–1005 (1967)

    Article  ADS  Google Scholar 

  • R. Schlickeiser, P.H. Yoon, On the marginal instability threshold condition of the aperiodic ordinary mode. Phys. Plasmas 21, 072119 (2014)

    Article  ADS  Google Scholar 

  • R. Schlickeiser, M.J. Michno, D. Ibscher, M. Lazar, T. Skoda, Modified temperature-anisotropy instability thresholds in the solar wind. Phys. Rev. Lett. 105, 201102 (2011)

    Article  ADS  Google Scholar 

  • E.E. Scime, P.A. Keiter, M.M. Balkey, R.F. Boivin, J.L. Kline, M. Blackburn, S.P. Gary, Ion temperature anisotropy limitation in high beta plasmas. Phys. Plasmas 7, 2157–2165 (2000)

    Article  ADS  Google Scholar 

  • S.J. Schwartz, Plasma instabilities in the solar wind: a theoretical review. Rev. Geophys. Space Phys. 18, 313–336 (1980)

    Article  ADS  Google Scholar 

  • S.J. Schwartz, W.C. Feldman, S.P. Gary, The source of proton anisotropy in the high-speed solar wind. J. Geophys. Res. 86, 541–546 (1981)

    Article  ADS  Google Scholar 

  • R. Schwenn, E. Marsch (eds.), Physics of the Inner Heliosphere I, Large-Scale Phenomena (Springer, Berlin, 1990)

    Google Scholar 

  • R. Schwenn, E. Marsch (eds.), Physics of the Inner Heliosphere II, Particles, Waves and Turbulence (Springer, Berlin, 1991)

    Google Scholar 

  • J. Seough, Y. Nariyuki, Effects of alpha-proton drift velocity on alpha particle firehose instability. Phys. Plasmas 23, 082113 (2016)

    Article  ADS  Google Scholar 

  • J. Seough, P.H. Yoon, Quasilinear theory of anisotropy–beta relations for proton cyclotron and parallel firehose instabilities. J. Geophys. Res. 117, A08101 (2012)

    Article  ADS  Google Scholar 

  • J. Seough, P.H. Yoon, K.-H. Kim, D.-H. Lee, Solar wind proton anisotropy versus beta relation. Phys. Rev. Lett. 110, 071103 (2013)

    Article  ADS  Google Scholar 

  • J. Seough, P.H. Yoon, J. Hwang, Quasilinear theory and particle-in-cell simulation of proton cyclotron instability. Phys. Plasmas 21, 062118 (2014)

    Article  ADS  Google Scholar 

  • J. Seough, P.H. Yoon, J. Hwang, Simulation and quasilinear theory of proton firehose instability. Phys. Plasmas 22, 012303 (2015a)

    Article  ADS  Google Scholar 

  • J. Seough, P.H. Yoon, J. Hwang, Y. Nariyuki, Simulation and quasilinear theory of aperiodic ordinary mode instability. Phys. Plasmas 22, 082122 (2015b)

    Article  ADS  Google Scholar 

  • S. Servidio, K.T. Osman, F. Valentini, D. Perrone, F. Calidano, S. Chapman, W.H. Matthaeus, P. Veltri, Proton kinetic effects in Vlasov and solar wind turbulence. Astrophys. J. Lett. 781, L27 (2014)

    Article  ADS  Google Scholar 

  • S.M. Shaaban, M. Lazar, S. Poedts, A. Elhanbaly, The interplay of the solar wind proton core and halo populations: EMIC instability. J. Geophys. Res. 121, 6031–6047 (2016)

    Article  Google Scholar 

  • S.M. Shaaban, M. Lazar, S. Poedts, A. Elhanbaly, Shaping the solar wind temperature anisotropy by the interplay of electron and proton instabilities. Astrophys. Space Sci. 362, 13 (2017)

    Article  ADS  Google Scholar 

  • M. Shoji, Y. Omura, B.T. Tsurutani, O.P. Verkhoglyadova, B. Lembege, Mirror instability and L-mode electromagnetic ion cyclotron instability: competition in the Earth’s magnetosheath. J. Geophys. Res. 114, A10203 (2009). doi:10.1029/2008JA014038

    Article  ADS  Google Scholar 

  • D.J. Southwood, M.G. Kivelson, Mirror instability: 1. Physical mechanism of linear instability. J. Geophys. Res. 98, 9181–9187 (1993)

    Article  ADS  Google Scholar 

  • A. Stockem Novo, P.H. Yoon, M. Lazar, R. Schlickeiser, S. Poedts, J. Seough, Quasilinear saturation of the aperiodic ordinary mode streaming instability. Phys. Plasmas 22, 092301 (2015)

    Article  ADS  Google Scholar 

  • Š. Štverák, P. Trávníček, M. Maksimovic, E. Marsch, A.N. Fazakerley, E.E. Scime, Electron temperature anisotropy constraints in the solar wind. J. Geophys. Res. 113, A03103 (2008). doi:10.1029/2007JA012733

    Article  ADS  Google Scholar 

  • L.C. Tan, S.F. Fung, R.L. Kessel, S.-H. Chen, J.L. Green, T.E. Eastman, Ion temperature anisotropies in the Earth’s high-latitude magnetosheath: Hawkeye observations. Geophys. Res. Lett. 25, 587–590 (1998)

    Article  ADS  Google Scholar 

  • P. Trávníček, P. Hellinger, M.G.G. Taylor, C.P. Escoubet, I. Dandouras, E. Lucek, Magnetosheath plasma expansion: hybrid simulations. Geophys. Res. Lett. 34, L15104 (2007). doi:10.1029/2007GL029728

    ADS  Google Scholar 

  • R.A. Treumann, W. Baumjohann, Advanced Space Plasma Physics (Imperial College Press, London, 1997)

    Book  MATH  Google Scholar 

  • R.A. Treumann, C.H. Jaroschek, O.D. Constantinescu, R. Nakamura, O.A. Pokhotelov, E. Georgescu, The strange physics of low frequency mirror mode turbulence in high temperature plasma of the magnetosheath. Nonlinear Proc. Geophys. 11, 647–657 (2004)

    Article  ADS  Google Scholar 

  • S. Vafin, R. Schlickeiser, P.H. Yoon, Linear theory of low frequency magnetosonic instabilities in counterstreaming bi-Maxwellian plasmas. Phys. Plasmas 22, 092131 (2015)

    Article  ADS  Google Scholar 

  • D. Verscharen, B.D.G. Chandran, K.G. Klein, E. Quataert, Collisionless isotropization of the solar-wind protons by compressive fluctuations and plasma instabilities. Astrophys. J. 831, 128 (2016)

    Article  ADS  Google Scholar 

  • A.A. Vedenov, E.P. Velikov, R.Z. Sagdeev, Stability of plasma. Sov. Phys. Uspekhi 4, 332–369 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  • A.F. Viñas, P.S. Moya, R. Navarro, J.A. Araneda, The role of higher-order modes on the electromagnetic whistler-cyclotron wave fluctuations of thermal and non-thermal plasmas. Phys. Plasmas 21, 012902 (2014)

    Article  ADS  Google Scholar 

  • A.F. Viñas, P.S. Moya, R. Navarro, J.A. Valdivia, J.A. Araneda, V. Muñoz, Electromagnetic fluctuations of the whistler-cyclotron and firehose instabilities in a Maxwellian and Tsallis-kappa-like plasma. J. Geophys. Res. 120, 3307–3317 (2015)

    Article  Google Scholar 

  • F. Xiao, Q. Zhou, H. He, H. Zheng, S. Wang, Whistler instability threshold condition of energetic electrons by kappa distribution in space plasmas. J. Geophys. Res. 111, A08208 (2006)

    ADS  Google Scholar 

  • F. Xiao, Q. Zhou, H. He, H. Zheng, S. Wang, Electromagnetic ion cyclotron waves instability threshold condition of suprathermal protons by kappa distribution. J. Geophys. Res. 112, A07219 (2007)

    Article  ADS  Google Scholar 

  • P.H. Yoon, Quasilinear evolution of Alfvén-ion-cyclotron and mirror instabilities driven by ion temperature anisotropy. Phys. Fluids B 4, 3627–3637 (1992)

    Article  ADS  Google Scholar 

  • P.H. Yoon, Proton temperature relaxation in the solar wind by combined collective and collisional processes. J. Geophys. Res. 121, 10665–10676 (2016a)

    Article  Google Scholar 

  • P.H. Yoon, On the isotropization of solar wind protons. Astrophys. J. 833, 106 (2016b)

    Article  ADS  Google Scholar 

  • P.H. Yoon, Collisional relaxation of bi-Maxwellian plasma temperatures in magnetized plasmas. Phys. Plasmas 23, 072114 (2016c)

    Article  ADS  Google Scholar 

  • P.H. Yoon, M. Sarfraz, Interplay of electron and proton instabilities in expanding solar wind. Astrophys. J. 835, 246 (2017)

    Article  ADS  Google Scholar 

  • P.H. Yoon, J. Seough, Quasilinear theory of anisotropy–beta relations for combined mirror and proton cyclotron instabilities. J. Geophys. Res. 117, A08102 (2012)

    ADS  Google Scholar 

  • P.H. Yoon, J. Seough, Proton-cyclotron and firehose instabilities in inhomogeneous plasmas. J. Geophys. Res. 119, 7108–7119 (2014)

    Article  Google Scholar 

  • P.H. Yoon, C.S. Wu, A.S. de Assis, Effect of finite ion gyroradius on the fire-hose instability in a high beta plasma. Phys. Fluids B 5, 1971–1979 (1993)

    Article  ADS  Google Scholar 

  • P.H. Yoon, J. Seough, J. Hwang, Y. Nariyuki, Macroscopic quasi-linear theory and particle-in-cell simulation of helium ion anisotropy instabilities. J. Geophys. Res. 120, 6071–6084 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The author acknowledges NSF Grant AGS1550566 to the University of Maryland, and the BK21 plus program from the National Research Foundation (NRF), Korea, to Kyung Hee University. Part of this work was carried out while P.H.Y. was visiting Ruhr University Bochum, Germany, which was made possible by the support from the Ruhr University Research School PLUS, funded by Germany’s Excellence Initiative (DFG GSC 98/3), and by a Mercator fellowship awarded by the Deutsche Forschungsgemeinschaft through the Grant Schl 201/31-1. The author acknowledges use of Wind SWE (Ogilvie et al. 1995) ion data, and Wind MFI (Lepping et al. 1995) magnetic field data from the SPDF CDAWeb service: http://cdaweb.gsfc.nasa.gov/. The author also acknowledges many collaborators including J. Seough, K.-H. Kim, D.H. Lee, M. Sarfraz, S. Saeed, R. Schlickeiser, M. Lazar, and others.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter H. Yoon.

Ethics declarations

Conflict of interest

The corresponding author states that he has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoon, P.H. Kinetic instabilities in the solar wind driven by temperature anisotropies. Rev. Mod. Plasma Phys. 1, 4 (2017). https://doi.org/10.1007/s41614-017-0006-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41614-017-0006-1

Keywords

Navigation