Skip to main content

Construction and application of LHAASO data processing platform

Abstract

Purpose

The LHAASO project collects trillions of cosmic ray events every year, generating about 10 PB of raw data annually, which brings big challenges for data processing platform.

Method

The LHAASO data processing platform is built to handle such a large amount of data, which is composed of some subsystems such as data transfer, data storage, high throughput computing and metadata management.

Results and conclusions

The platform was under construction since 2018 and has been working well since 2021. In this paper, the details of the design, implementation and performance of the data processing platform are presented.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. C. Zhen et al., Introduction to large high altitude air shower observatory (LHAASO). Chin. Astron. Astrophys. 43(4), 457–478 (2019)

    ADS  Article  Google Scholar 

  2. C. Zhen et al., Ultrahigh-energy photons up to 1.4 petaelectronvolts from 12 γ-ray Galactic sources. Nature 594(7861), 33–36 (2021)

    ADS  Article  Google Scholar 

  3. C. Zhen et al., peta-electron volt gamma-ray emission from the Crab Nebula. Science 373(6553), 425–430 (2021)

    ADS  Article  Google Scholar 

  4. C. Zhen, C. Minjun, C. Songzhan et al., Introduction to large high altitude air shower observatory (LHAASO). Acta Astronom. Sinica 60(3), 16 (2019)

    Google Scholar 

  5. Gu, M., Zhu, K., Zhuang, J.: Research and design of DAQ system for LHAASO experiment. In: International Cosmic Ray Conference. 2011, 3: 259.

  6. Schwan P. Lustre: Building a File System for 1,000-node Clusters. In: Proceedings of the linux symposium, 2003.

  7. A.J. Peters, E.A. Sindrilaru, G. Adde, EOS as the present and future solution for data storage at CERN. J. Phys: Conf. Ser. 664, 062037 (2015)

    Google Scholar 

  8. Amanda software website. http://www.amanda.org/

  9. Presti, G.L., Barring, O., Earl, A., et al.: CASTOR: A distributed storage resource facility for high performance data processing at CERN. In: 24th IEEE Conference on mass storage systems and technologies (MSST 2007). IEEE, 2007: 275–280.

  10. E. Cano, V. Bahyl, C. Caffy et al., CERN Tape Archive: a distributed, reliable and scalable scheduling system. EPJ Web Conf. EDP Sci. 251, 02037 (2021). https://doi.org/10.1051/epjconf/202125102037

    Article  Google Scholar 

  11. G. Bitzes, E.A. Sindrilaru, A.J. Peters, Scaling the EOS namespace–new developments, and performance optimizations. EPJ Web Conf. EDP Sci. 214, 04019 (2019). https://doi.org/10.1051/epjconf/201921404019

    Article  Google Scholar 

  12. Ongaro, D., Ousterhout, J.: In search of an understandable consensus algorithm. In: 2014 USENIX Annual Technical Conference (Usenix ATC 14). 2014: 305–319.

  13. Intel Intelligent Storage Acceleration Library (Intel ISA-L). https://github.com/intel/isa-l

  14. SNIA Technical Work Group on Computational Storage. https://www.snia.org/computational.

  15. Y. Cheng, Y. Cheng, Y. Yujiang Bi, H.L. Gao, L. Wang, Q. Yao, Data processing system for HEP based on domestic processor architecture. Big Data Res. 7(5), 2021046 (2021)

    Google Scholar 

  16. E.M. Fajardo, J.M. Dost, B. Holzman et al., How much higher can HTCondor fly. J. Phys. Conf. Series IOP Publish. 664(6), 062014 (2015)

    Article  Google Scholar 

  17. Rosado, T., Bernardino, J.: An overview of openstack architecture. In: Proceedings of the 18th international database engineering and applications symposium. 2014.

  18. D. Bernstein, Containers and cloud: from LXC to docker to kubernetes. IEEE Cloud Comput. 1(3), 81–84 (2014)

    Article  Google Scholar 

  19. G.M. Kurtzer, V. Sochat, M.W. Bauer, Singularity: scientific containers for mobility of compute. PLoS ONE 12(5), e0177459 (2017)

    Article  Google Scholar 

  20. Z. Cao, F. Aharonian, Q. An et al., Exploring Lorentz invariance violation from ultrahigh-energy γ rays observed by LHAASO[J]. Phys. Rev. Lett. 128(5), 051102 (2022)

    ADS  Article  Google Scholar 

  21. Z. Cao, F. Aharonian, Q. An et al., Discovery of the ultrahigh-energy gamma-ray source LHAASO J2108+ 5157[J]. Astrophys. J. Lett. 919(2), L22 (2021)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Nature Science Foundation of China (Grant Nos. 12075268, 12175255, 12175258, 12105300), the Chinese Academy of Science, Institute of High Energy Physics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haibo Li.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cheng, Y., Li, H., Bi, Y. et al. Construction and application of LHAASO data processing platform. Radiat Detect Technol Methods (2022). https://doi.org/10.1007/s41605-022-00328-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41605-022-00328-2

Keywords

  • LHAASO
  • Data processing platform
  • Data storage and management
  • High-performance computing
  • Metadata management