Skip to main content

A high-position-resolution trajectory detector system for cosmic ray muon tomography: Monte Carlo simulation



The research focuses on the related designing and simulating the high-position-resolution trajectory detector system based on cosmic ray muon tomography.


The energy deposition of muon in the detector varies with the length of the ionization path.


The simulation of the submillimeter detector system was designed for muon imaging. The optimal position resolution of the detector reached 0.6 mm.


The entire research process includes the selection of analysis of parameters affecting system design, designing of two high-position-resolution detectors based on plastic scintillators, implementation of different imaging algorithms and image quality assessment based on different imaging models. It provides a solution based on high positional resolution plastic scintillator detectors for cosmic ray muon scattering imaging.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.


  1. S.I. Eidelman, “Interactions of particles and radiation with matter in handbook of particle detection and imaging (Springer, New York, 2011)

    Google Scholar 

  2. K. Morishima et al., Discovery of a big void in Khufu’s Pyramid by observation of cosmic-ray muons. Nat. Publ. Group 552(7685), 386–390 (2017).

    Article  Google Scholar 

  3. L.J. Schultz, Cosmic ray muon radiography (Portland State University, 2003)

    Google Scholar 

  4. C.M. Liu, Q.G. Wen, Z.Y. Zhang, G.S. Huang, Study of muon tomographic imaging for high-Z material detection with a Micromegas-based tracking system. Radiation Detect Technol Methods (2020).

    Article  Google Scholar 

  5. K. Gnanvo, L.V. Grasso, M. Hohlmann, J.B. Locke, A. Quintero, D. Mitra, Imaging of high-Z material for nuclear contraband detection with a minimal prototype of a muon tomography station based on GEM detectors. Nucl. Instrum. Methods Phys. Res., Sect. A 652(1), 16–20 (2011).

    ADS  Article  Google Scholar 

  6. W.C. Priedhorsky et al., Detection of high-Z objects using multiple scattering of cosmic ray muons. Rev. Sci. Instrum. 74(10), 4294–4297 (2003).

    ADS  Article  Google Scholar 

  7. X. Wang et al., The cosmic ray muon tomography facility based on large scale MRPC detectors. Nucl. Instrum. Methods Phys. Res., Sect. A 784, 390–393 (2015).

    ADS  Article  Google Scholar 

  8. J. Pan et al., “Position Encoding Readout Electronics of Large Area Micromegas Detectors aiming for Cosmic Ray Muon Imaging,” 2019 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2019, pp. 1–5, 2019, doi:

  9. S. Basnet et al., Towards portable muography with small-area, gas-tight glass resistive plate chambers. J. Instrumentation 15, 10 (2020).

    Article  Google Scholar 

  10. V. Anghel et al., A plastic scintillator-based muon tomography system with an integrated muon spectrometer. Nucl. Instrum. Methods Phys. Res., Sect. A 798, 12–23 (2015).

    ADS  Article  Google Scholar 

  11. S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, Geant 4 — a simulation toolkit. Nucl. Phys. News 506, 250–303 (2003).

    Article  Google Scholar 

  12. C. Hagmann, D. Lange, and D. Wright, “Cosmic-ray shower generator (CRY) for Monte Carlo transport codes,” IEEE Nuclear Science Symposium Conference Record, vol. 2, pp. 1143–1146, 2007, doi:

  13. L.J. Schultz et al., Statistical reconstruction for cosmic ray muon tomography. IEEE Trans. Image Process. 16(8), 1985–1993 (2007).

    ADS  MathSciNet  Article  Google Scholar 

  14. K.A. Olive et al., Review of particle physics. Chinese Phys. C 38, 9 (2014).

    Article  Google Scholar 

  15. J.W. Motz, H. Olsen, H.W. Koch, Electron scattering without atomic or nuclear excitation. Rev. Mod. Phys. 36(4), 881–928 (1964).

    ADS  MathSciNet  Article  Google Scholar 

  16. G.R. Lynch, O.I. Dahl, Approximations to multiple Coulomb scattering. Nucl. Inst. Methods Phys. Res., B 58(1), 6–10 (1991).

    ADS  Article  Google Scholar 

  17. C.T. Case, E.L. Battle, Molière’s theory of multiple scattering. Phys. Rev. 169(1), 201–204 (1968).

    ADS  Article  Google Scholar 

  18. L.J. Schultz et al., Image reconstruction and material Z discrimination via cosmic ray muon radiography. Nucl. Instrum. Methods Phys. Res., Sect. A 519(3), 687–694 (2004).

    ADS  Article  Google Scholar 

  19. X.-D. Wang et al., “The Study of Cosmic Ray Tomography Using Multiple Scattering of Muons for Imaging of High-Z Materials,” vol. XX, no. 12, pp. 1–11, 2016, [Online]. Available:

  20. C.J. Benton, N.D. Smith, S.J. Quillin, C.A. Steer, Most probable trajectory of a muon in a scattering medium, when input and output trajectories are known. Nucl. Inst. Methods Phys. Res., A 693, 154–159 (2012).

    ADS  Article  Google Scholar 

  21. H. Yi et al., “Bayesian-theory-based most probable trajectory reconstruction algorithm in cosmic ray muon tomography,” 2014 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2014, pp. 1–4, 2016, doi:

Download references


This work was supported by the National Natural Science Foundation of China (Grant No. U2067206 and No. U1932162). The authors would like to thank all those who have contributed in one way or another to the realization of this work, especially the research groups of Yuekun Heng and Xingzhong Cao from the Institute of High Energy Physics Chinese Academy of Sciences.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Long Wei.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhai, J., Tang, H., Huang, X. et al. A high-position-resolution trajectory detector system for cosmic ray muon tomography: Monte Carlo simulation. Radiat Detect Technol Methods 6, 244–253 (2022).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Cosmic ray
  • Muon tomography
  • Plastic scintillator
  • Position resolution
  • PoCA