Skip to main content

The offline data quality monitoring of the BESIII end-cap TOF system

A Correction to this article was published on 23 December 2021

This article has been updated

Abstract

Background

The end-cap time-of-flight (TOF) at Beijing Spectrometer was upgraded with multi-gap resistive plate chamber technology in order to improve the particle identification capability in 2015. The offline data quality monitoring (ODQM) is a critical aspect of the data processing chain aiming at providing data with good quality for physics analyses.

Method

An ODQM tool for upgraded end-cap TOF has been developed to provide feedback about the functioning and performance of detector hardware and data processing chain. Detector information and reconstructed time-of-flight characteristics of charged tracks are filled into plots using full Bhabha events’ reconstruction results, and then, these plots are used to assess the operational conditions of the detector and the quality of the data by the experts.

Result

This paper describes the design and the content of performance of the ODQM of end-cap TOF and the data quality performance achieved during the last 2-year physical data taking.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Change history

References

  1. M. Ablikim et al. (BESIII Collaboration), Nucl. Instrum. Methods A 614, 345–399 (2010)

  2. M. Ablikim et al. (BESIII Collaboration), Nucl. Instrum. Methods A 598, 7–11 (2009)

  3. C. Zhang, for BEPC&BEEPCII Teams, Proceedings of APAC, p. 15—19, Gyeongju, Korea (2004)

  4. Q. Gang et al., Chin. Phys. C 32, 1–8 (2018)

    Article  Google Scholar 

  5. Y.K. Heng et al., in IEEE Nuclear Science Symposium Conference Record, p. 53–57 (2007)

  6. C. Wu et al., Nucl. Instrum. Methods A 555, 142–147 (2005)

    ADS  Article  Google Scholar 

  7. S. Zhi-Jia et al., High Energy Phys. Nucl. Phys. 29(10), 933–937 (2005). in Chinese

    Google Scholar 

  8. S.H. An et al., Meas. Sci. Technol. 17, 2650–2654 (2006)

    ADS  Article  Google Scholar 

  9. E.C. Zeballos et al., Nucl. Instrum. Methods A 374, 132–136 (1996)

    ADS  Article  Google Scholar 

  10. M.C.S. Williams et al. (ALICE Collaboration), Nucl. Phys. A 698, 464–467 (2001)

  11. P. Fonte et al., Nucl. Instrum. Methods A 449, 295–301 (2000)

    ADS  Article  Google Scholar 

  12. A. Akindinov et al., Nucl. Instrum. Methods A 602, 821–824 (2009)

    ADS  Article  Google Scholar 

  13. S. Yong-Jie et al., Chin. Phys. C (HEP&NP) 36, 429–433 (2012)

    ADS  Article  Google Scholar 

  14. S. Yang et al., Nucl. Instrum. Methods A 76, 190–196 (2014)

    ADS  Article  Google Scholar 

  15. H. Fan et al., IEEE Trans. Nucl. Sci. 60, 3563 (2013)

    ADS  Article  Google Scholar 

  16. X. Li et al., Radiat. Detect. Technol.Methods. 1, 13 (2017)

    Article  Google Scholar 

  17. D. De Gruttola et al., Nucl. Instrum. Methods A 661, S102–S105 (2012)

    Article  Google Scholar 

  18. A. Alici et al., Nucl. Instrum. Methods A 706, 29–32 (2013)

    ADS  Article  Google Scholar 

  19. F. Geurts et al., Nucl. Instrum. Methods A 533, 60–64 (2004)

    ADS  Article  Google Scholar 

  20. W.J. Llope, Nucl. Instrum. Methods A 241, 306–310 (2005)

    Article  Google Scholar 

  21. Y.-X. Guo et al., Radiat. Detect. Technol. Methods 1, 15 (2017)

    Article  Google Scholar 

  22. X. Chen et al., Nucl. Instrum. Methods A 592, 428–433 (2008)

    ADS  Article  Google Scholar 

  23. X. Xiao-Xi et al., Nucl. Electron. Detect. Technol. 26, 291–295 (2006). in Chinese

    Google Scholar 

  24. Z. Yin-Hong et al., Nucl. Electron. Detect. Technol. 28, 744–748 (2008). in Chinese

    Google Scholar 

  25. L. Fei et al., Nucl. Electron. Detect. Technol. 27, 462–465 (2007). in Chinese

    Google Scholar 

  26. H. Ji-Feng et al., Chin. Phys. C (HEP&NP) 36, 62–66 (2012)

    ADS  Article  Google Scholar 

  27. S. Xiao-Dong et al., Chin. Phys. C (HEP&NP) 36, 622–627 (2012)

    ADS  Article  Google Scholar 

  28. X.Z. Wang et al., Chin. Phys. C (HEP&NP) 41, 016103 (2017)

  29. Z. Wu et al., JINST 11, C07005 (2016)

    ADS  Article  Google Scholar 

  30. X.Z. Wang et al., Eur. Phys. J. C 76, 211 (2016)

    ADS  Article  Google Scholar 

  31. X. Ma et al., High Energy Phys. Nucl. Phys. 32, 744–749 (2008)

    Google Scholar 

  32. S. Agostinelli et al. (GEANT4 Collaboration), Nucl. Instrum. Methods A 506, 250–303 (2003)

  33. L.L. Wang et al., High Energy Phys. Nucl.Phys. 31, 183–188 (2007). in Chinese

    Google Scholar 

  34. J.K. Wang et al., Chin. Phys. C (HEP&NP) 33, 870–879 (2009)

    ADS  Article  Google Scholar 

  35. J. Yan et al., Chin. Phys. C (HEP&NP) 34, 368–373 (2010)

    ADS  Article  Google Scholar 

  36. C.D. Fu et al., Chin. Phys. C (HEP&NP) 32, 329–337 (2008)

    ADS  Article  Google Scholar 

  37. W.D. Li, et al., in International Conference on Computing in High-Energy and Nuclear Physics, p. 225 (2006)

  38. G. Barrand et al., Comput. Phys. Commun. 140, 45 (2001)

    ADS  Article  Google Scholar 

  39. R.X. Yang et al., JINST 12, C01012 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the tremendous efforts of the BESIII ETOF group. This work is supported in part by the CAS center for Excellence in Particle Physics (CCEPP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Yi Liu.

Additional information

Supported in part by National Natural Science Foundation of China (11575225, 11875277, U1232201, 11605220, U1832204), National Key Basic Research Program of China (2015CB856700), Chinese Academy of Sciences (1G201331231172010).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ma, MM., Liu, JY., Wen, SP. et al. The offline data quality monitoring of the BESIII end-cap TOF system. Radiat Detect Technol Methods 5, 207–212 (2021). https://doi.org/10.1007/s41605-021-00251-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41605-021-00251-y

Keywords

  • Offline data quality monitoring
  • Time-of-flight
  • MRPC
  • BESIII