Skip to main content

Prospects of detecting the reactor \(\overline{\nu }_{\mathrm{e}}\)-Ar coherent elastic scattering with a low-threshold dual-phase argon time projection chamber at Taishan



We propose to measure the coherent elastic neutrino-nucleus scattering (CEvNS) using a dual-phase liquid argon time projection chamber (TPC) with 200 kg fiducial mass. The detector is expected to be adjacent to the JUNO-TAO experiment and to be about 35 m from a reactor core with 4.6 GW thermal power at Taishan. The antineutrino flux is approximately \(6\times 10^{12} \mathrm{cm}^{-1}\mathrm{s}^{-1}\) at this location, leading to more than 11,000 coherent scattering events per day in the fiducial mass.


The nuclear recoil energies concentrate in the sub-keV region, corresponding to less than ten ionization electrons in the liquid argon. The key question is how to veto and shield the background in the hall where the vertical overburden is about 5 m.w.e. And what is the signal count rate and the background rate. In addition, what physical parameters can be measured what is the sensitivity.


We used the Geant4 to simulate the backgrounds from cosmic ray muons and ambient radioactivity decays. And a veto and shielding design is presented. Then a \(\chi ^2\) function is constructed and the sensitivity calculate package built to calculate the sensitivity of physical parameters.


The detection of several ionization electrons can be achieved in the dual-phase TPC due to the large amplification in the gas region. With a feasible detection threshold of four ionization electrons, the signal rate is 955 per day. The detector is designed to be shielded well from cosmogenic backgrounds and ambient radioactivities to reach a 16% background-to-signal ratio in the energy region of interest. With the large CEvNS sample, the expected sensitivity of measuring the weak mixing angle \(\sin ^2\!\theta _\mathrm{w}\), and of limiting the neutrino magnetic moment are discussed. In addition, a synergy between the reactor antineutrino CEvNS experiment and the dark matter experiment is foreseen.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. D.Z. Freedman, Coherent effects of a weak neutral current. Phys. Rev. D 9, 1389–1392 (1974)

    ADS  Article  Google Scholar 

  2. D. Akimov et al., Observation of Coherent elastic neutrino-nucleus scattering. Science 357(6356), 1123–1126 (2017)

    ADS  Article  Google Scholar 

  3. D. Akimov et al., First detection of coherent elastic neutrino-nucleus scattering on argon, 3 (2020)

  4. Matteo Cadeddu, Francesca Dordei, Reinterpreting the weak mixing angle from atomic parity violation in view of the Cs neutron RMS radius measurement from COHERENT. Phys. Rev. D 99(3), 033010 (2019)

    ADS  Article  Google Scholar 

  5. M. Cadeddu, C. Giunti, Y. Li, Y. Zhang. Average CsI neutron density distribution from COHERENT data. PoS, NuFACT 2018:144 (2018)

  6. D.K. Papoulias, T.S. Kosmas, COHERENT constraints to conventional and exotic neutrino physics. Phys. Rev. D 97(3), 033003 (2018)

    ADS  Article  Google Scholar 

  7. M. Cadeddu, C. Giunti, K.A. Kouzakov, Y.F. Li, A.I. Studenikin, Y.Y. Zhang, Neutrino charge radii from COHERENT elastic neutrino-nucleus scattering. Phys. Rev. D 98(11):113010 (2018) [Erratum: Phys. Rev. D 101, 059902 (2020)]

  8. E. Aprile et al., Results from a calibration of XENON100 using a source of dissolved radon-220. Phys. Rev. D 95(7), 072008 (2017)

    ADS  Article  Google Scholar 

  9. Hongguang Zhang et al., Dark matter direct search sensitivity of the PandaX-4T experiment. Sci. China Phys. Mech. Astron. 62(3), 31011 (2019)

    ADS  Article  Google Scholar 

  10. C.E. Aalseth et al., DarkSide-20k: a 20 tonne two-phase LAr TPC for direct dark matter detection at LNGS. Eur. Phys. J. Plus 133, 131 (2018)

    Article  Google Scholar 

  11. P. Agnes et al., Low-mass dark matter search with the DarkSide-50 experiment. Phys. Rev. Lett. 121(8), 081307 (2018)

    ADS  Article  Google Scholar 

  12. E. Aprile et al., Search for light dark matter interactions enhanced by the Migdal effect or bremsstrahlung in XENON1T. Phys. Rev. Lett. 123(24), 241803 (2019)

    ADS  Article  Google Scholar 

  13. D.S. Akerib et al., Improving sensitivity to low-mass dark matter in LUX using a novel electrode background mitigation technique, 11 (2020)

  14. D.K. Papoulias, T.S. Kosmas, Y. Kuno, Recent probes of standard and non-standard neutrino physics with nuclei. Front. Phys. 7, 191 (2019)

    Article  Google Scholar 

  15. J. Newby. Results from coherent, June (2020)

  16. Alexis Aguilar-Arevalo et al., Exploring low-energy neutrino physics with the Coherent Neutrino Nucleus Interaction Experiment. Phys. Rev. D 100(9), 092005 (2019)

    ADS  Article  Google Scholar 

  17. G. Agnolet et al., Background studies for the MINER Coherent Neutrino scattering reactor experiment. Nucl. Instrum. Methods A 853, 53–60 (2017)

    ADS  Article  Google Scholar 

  18. H. Bonet et al., First constraints on elastic neutrino nucleus scattering in the fully coherent regime from the Conus experiment. Phys. Rev. Lett. 126, 041804 (2020)

    ADS  Article  Google Scholar 

  19. D. Yu Akimov et al., First ground-level laboratory test of the two-phase xenon emission detector RED-100. JINST 15(02), P02020 (2020)

    Article  Google Scholar 

  20. A. Abusleme et al., TAO conceptual design report: a precision measurement of the reactor antineutrino spectrum with sub-percent energy resolution, 5 (2020)

  21. P. Agnes et al. Results from the first use of low radioactivity argon in a dark matter search. Phys. Rev. D 93(8):081101 (2016) [Addendum: Phys.Rev.D 95, 069901 (2017)]

  22. C.G. Payne, S. Bacca, G. Hagen, W. Jiang, T. Papenbrock, Coherent elastic neutrino-nucleus scattering on \(^{40}\)Ar from first principles. Phys. Rev. C 100(6), 061304 (2019)

    ADS  Article  Google Scholar 

  23. ThA Mueller et al., Improved predictions of reactor antineutrino spectra. Phys. Rev. C 83, 054615 (2011)

    ADS  Article  Google Scholar 

  24. P. Huber. On the determination of anti-neutrino spectra from nuclear reactors. Phys. Rev. C, 84:024617 (2011) [Erratum: Phys. Rev. C 85, 029901 (2012)]

  25. M. Fallot et al., New antineutrino energy spectra predictions from the summation of beta decay branches of the fission products. Phys. Rev. Lett. 109, 202504 (2012)

    ADS  Article  Google Scholar 

  26. D.Yu. Akimov et al., Status of the RED-100 experiment. JINST 12(06), C06018 (2017)

  27. D. Khaitan, Supernova neutrino detection in LZ. JINST 13(02), C02024 (2018)

    Article  Google Scholar 

  28. G. Carugno, B. Dainese, F. Pietropaolo, F. Ptohos, Electron lifetime detector for liquid argon. Nucl. Instrum. Methods A 292, 580–584 (1990)

    ADS  Article  Google Scholar 

  29. S. Agostinelli et al., GEANT4: a simulation toolkit. Nucl. Instrum. Methods A506, 250–303 (2003)

    ADS  Article  Google Scholar 

  30. D. Gastler, E. Kearns, A. Hime, L.C. Stonehill, S. Seibert, J. Klein, W.H. Lippincott, D.N. McKinsey, J.A. Nikkel, Measurement of scintillation efficiency for nuclear recoils in liquid argon. Phys. Rev. C 85, 065811 (2012)

    ADS  Article  Google Scholar 

  31. C. Bungau, B. Camanzi, J. Champer, Y. Chen, D.B. Cline, R. Luscher, J.D. Lewin, P.F. Smith, N.J.T. Smith, H. Wang. Monte Carlo studies of combined shielding and veto techniques for neutron background reduction in underground dark matter experiments based on liquid noble gas targets. Astropart. Phys., 23:97–115 (2005) [Erratum: Astropart. Phys. 23, 535–535 (2005)]

  32. P. Agnes et al., First results from the DarkSide-50 dark matter experiment at Laboratori Nazionali del Gran Sasso. Phys. Lett. B 743, 456–466 (2015)

    ADS  Article  Google Scholar 

  33. F. Peng An et al. Improved measurement of the reactor antineutrino flux and spectrum at Daya bay. Chin. Phys. C 41(1):013002 (2017)

  34. E. Aprile et al., Light dark matter search with ionization signals in XENON1T. Phys. Rev. Lett. 123(25), 251801 (2019)

    ADS  Article  Google Scholar 

  35. M. Andriamirado et al., Improved short-baseline neutrino oscillation search and energy spectrum measurement with the PROSPECT experiment at HFIR, 6 (2020)

  36. H.A. Molina et al. First antineutrino energy spectrum from \(^{235}\)U fissions with the STEREO detector at ILL, 10 (2020)

  37. P.A. Zyla et al. Review of particle physics. PTEP 2020(8), 083C01 (2020)

  38. M. Cadeddu, F. Dordei, C. Giunti, Y.F. Li, Y.Y. Zhang, Neutrino, electroweak, and nuclear physics from COHERENT elastic neutrino-nucleus scattering with refined quenching factor. Phys. Rev. D 101(3), 033004 (2020)

    ADS  Article  Google Scholar 

  39. M. Cadeddu, F. Dordei, C. Giunti, Y.F. Li, E. Picciau, Y.Y. Zhang, Physics results from the first COHERENT observation of coherent elastic neutrino-nucleus scattering in argon and their combination with cesium-iodide data. Phys. Rev. D 102(1), 015030 (2020)

  40. A.G. Beda, V.B. Brudanin, V.G. Egorov, D.V. Medvedev, V.S. Pogosov, M.V. Shirchenko, A.S. Starostin, The results of search for the neutrino magnetic moment in GEMMA experiment. Adv. High Energy Phys. 2012, 350150 (2012)

    Article  Google Scholar 

Download references


The study is supported by National Key R&D Program of China (2016YFA0400304) and National Natural Science Foundation of China (11975244). The authors would like to thank Yufeng Li, Yiyu Zhang, and Yi Wang for the helpful discussion.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Jin-Chang Liu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wei, YT., Guan, MY., Liu, JC. et al. Prospects of detecting the reactor \(\overline{\nu }_{\mathrm{e}}\)-Ar coherent elastic scattering with a low-threshold dual-phase argon time projection chamber at Taishan. Radiat Detect Technol Methods 5, 297–306 (2021).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Coherent elastic neutrino-nucleus scattering
  • Dual-phase argon TPC
  • Reactor antineutrinos