Skip to main content

Evaluation of a position-sensitive prototype detector unit for fast neutron imaging and spectroscopy

Abstract

Purpose

A novel fast neutron scatter camera with capabilities of neutron imaging and spectroscopy is under development. The detection principle is based on multiple neutron–proton (n–p) elastic scattering interactions in organic scintillator. In order to improve position measurement accuracy of recoil protons, a position-sensitive prototype detector unit has been designed and characterized experimentally.

Methods

The presented detector unit consisted of a plastic scintillator sheet of 10 cm × 10 cm × 1 cm dimensions and two groups (6 × 2) of wavelength-shifting fibers with orthogonal directions embedded into grooves on two opposite scintillator surfaces. Scintillation signals were read out by silicon photomultipliers (SiPMs). A collimated Sr-90 radioactive source was utilized for system calibration and position resolution measurement.

Results

Light output of the unidimensional six fiber channels from one side of the detector unit was calibrated to be 14.45 photoelectrons per MeVee. Position resolution of the detector unit was measured to be 0.35–0.44 times fiber pitch, corresponding to 5.48 mm for proton recoil energy interval of 1.63–2.60 MeV, and 4.60 mm for proton recoil energy interval of 4.82–5.50 MeV. Energy threshold for recoil proton localization was estimated to be 1.18 MeV.

Conclusion

The results shown satisfy basic requirements of the scatter camera, while space exists for further improvements. The positioning performance optimization consists of three aspects. The first one is to increase the fiber diameter so as to reduce signal loss. The second one is to depress dark rate of the SiPMs. The last one is to decrease the number of channels involved in position reconstruction by narrowing the scintillation signal distribution function of the detector unit.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

References

  1. G.F. Knoll, Radiation Detection and Measurement, 4th edn. (Wiley, New York, 2010)

    Google Scholar 

  2. P. Marleau, et al., Advances in imaging fission neutrons with a neutron scatter camera. in IEEE Nuclear Science Symposium Conference Record, pp. 170–172 (2007). https://doi.org/10.1109/NSSMIC.2007.4436310

  3. N. Mascarenhas et al., Results with the neutron scatter camera. IEEE Trans. Nucl. Sci. 56(3), 1269–1273 (2009). https://doi.org/10.1109/TNS.2009.2016659

    ADS  MathSciNet  Article  Google Scholar 

  4. J. Brennan, et al. Applying the neutron scatter camera to treaty verification and warhead monitoring. in IEEE Nuclear Science Symposium and Medical Imaging Conference Record, pp. 691–694 (2010). https://doi.org/10.1109/NSSMIC.2010.5873848

  5. A. Poitrasson-Rivière et al., Dual-particle imaging system based on simultaneous detection of photon and neutron collision events. Nucl. Instrum. Methods Phys. Res. A 760, 40–45 (2014). https://doi.org/10.1016/j.nima.2014.05.056

    ADS  Article  Google Scholar 

  6. A. Poitrasson-Rivière et al., Angular-resolution and material-characterization measurements for a dual-particle imaging system with mixed-oxide fuel. Nucl. Instrum. Methods Phys. Res. A 797, 278–284 (2015). https://doi.org/10.1016/j.nima.2015.06.045

    ADS  Article  Google Scholar 

  7. A. Poitrasson-Rivière et al., Monte Carlo investigation of a high-efficiency, two-plane Compton camera for long-range localization of radioactive materials. Prog. Nucl. Energy 81, 127–133 (2015). https://doi.org/10.1016/j.pnucene.2015.01.009

    Article  Google Scholar 

  8. K. Weinfurther et al., Model-based design evaluation of a compact, high-efficiency neutron scatter camera. Nucl. Instrum. Methods Phys. Res. A 883, 115–135 (2018). https://doi.org/10.1016/j.nima.2017.11.025

    ADS  Article  Google Scholar 

  9. Beijing Gaonengkedi Science and Technology Co. Ltd. Plastic Scintillator. http://www.gaonengkedi.com

  10. Z. Zong et al., Study of light yield for different configurations of plastic scintillators and wavelength shifting fibers. Nucl. Instrum. Methods Phys. Res. A 908, 82–90 (2018). https://doi.org/10.1016/j.nima.2018.08.029

    ADS  Article  Google Scholar 

  11. Saint-Gobain Crystals, Plastic Scintillator. https://www.crystals.saint-gobain.com/products/plastic-scintillators

  12. Saint-Gobain Crystals, Plastic Fiber. https://www.crystals.saint-gobain.com/products/scintillating-fiber

  13. Advantech UK Limited, Silicon photomultiplier. https://www.advatech-uk.co.uk/sipms.html

  14. F. Shi et al., Comparative studies of silicon photomultipliers and traditional vacuum photomultiplier tubes. Chin. Phys. C 35(1), 50–55 (2011). https://doi.org/10.1088/1674-1137/35/1/011

    ADS  Article  Google Scholar 

  15. S. Riggi et al., Geant4 simulation of plastic scintillator strips with embedded optical fibers for a prototype of tomographic system. Nucl. Instrum. Methods Phys. Res. A 624, 583–590 (2010). https://doi.org/10.1016/j.nima.2010.10.012

    ADS  Article  Google Scholar 

  16. 3M, Vikuiti Enhanced Specular Reflector (ESR)—ESR Sales Literature, 2010

  17. Saint-Gobain Crystals, Assembly Materials. https://www.crystals.saint-gobain.com/products/assembly-materials

  18. G. Dietze, H. Klein, Gamma-calibration of NE 213 scintillation counters. Nucl. Instrum. Methods 193, 549–556 (1982). https://doi.org/10.1016/0029-554X(82)90249-X

    ADS  Article  Google Scholar 

  19. M. Yang et al., Measurement of proton quenching in a LAB-based liquid scintillator. Radiat. Detect. Technol. Methods (2019). https://doi.org/10.1007/s41605-018-0049-z

    Article  Google Scholar 

  20. NIST, ESTAR: Stopping-power and Range Tables for Electrons, 2015. https://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html

  21. Saint-Gobain Crystals, Organic Scintillation Materials and Assemblies brochure. https://www.crystals.saint-gobain.com

  22. V.V. Verbinski, W.R. Burrus, T.A. Love, W. Zobel, N.W. Hill, R. Textor, Calibration of an organic scintillator for neutron spectrometry. Nucl. Instrum. Methods 65, 8–25 (1968). https://doi.org/10.1016/0029-554X(68)90003-7

    ADS  Article  Google Scholar 

  23. M. R. Moser. Theoretical contributions to the development of neutron scatter telescopes for fast neutron observation in space. PhD Thesis, University of Bern, Bern, Switzerland, 2006, pp. 84-89

  24. G. Landi et al., Properties of the center of gravity as an algorithm for position measurements. Nucl. Instrum. Methods Phys. Res. A 485, 698–719 (2002). https://doi.org/10.1016/S0168-9002(01)02071-X

    ADS  Article  Google Scholar 

  25. G. Landi et al., Properties of the center of gravity as an algorithm for position measurements: two-dimensional geometry. Nucl. Instrum. Methods Phys. Res. A 497, 511–534 (2003). https://doi.org/10.1016/S0168-9002(02)01822-3

    ADS  Article  Google Scholar 

  26. 朱永生,实验物理中的概率和统计(第二版),北京:科学出版社,2006

  27. J.B. Birks, The Theory and Practice of Scintillation Counting (Pergamon Press Ltd, New York, 1964)

    Google Scholar 

  28. F.D. Brooks, Development of organic scintillators. Nucl. Instrum. Methods 162, 477–505 (1979). https://doi.org/10.1016/0029-554X(79)90729-8

    ADS  Article  Google Scholar 

  29. R. Voltz, J.L. Silva, G. Laustriat, A. Coche, Influence of the nature of ionizing particles on the specific luminescence of organic scintillators. J. Chem. Phys. 45, 3306–3311 (1966). https://doi.org/10.1063/1.1728106

    ADS  Article  Google Scholar 

  30. S.P. Ahlen, B.G. Cartwright, G. Tarlé, Return to unsaturated response of polymeric scintillators excited by relativistic heavy ions. Nucl. Instrum. Methods 147, 321–328 (1977). https://doi.org/10.1016/0029-554X(77)90264-6

    ADS  Article  Google Scholar 

  31. M.A. Norsworthy et al., Evaluation of neutron light output response functions in EJ-309 organic scintillators. Nucl. Instrum. Methods Phys. Res. A 842, 20–27 (2017). https://doi.org/10.1016/j.nima.2016.10.035

    ADS  Article  Google Scholar 

  32. M. Janecek, W.W. Moses, Optical reflectance measurements for commonly used reflectors. IEEE Trans. Nucl. Sci. 55(4), 2432–2437 (2008). https://doi.org/10.1109/TNS.2008.2001408

    ADS  Article  Google Scholar 

  33. M. Janecek, Reflectivity spectra for commonly used reflectors. IEEE Trans. Nucl. Sci. 59(3), 490–497 (2012). https://doi.org/10.1109/TNS.2012.2183385

    ADS  Article  Google Scholar 

  34. X. Pang et al., A compact MPPC-based camera for omnidirectional (4π) fast-neutron imaging based on double neutron–proton elastic scattering. Nucl. Instrum. Methods Phys. Res. A 944, 162471 (2019). https://doi.org/10.1016/j.nima.2019.162471

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by National Natural Science Foundation of China (Grant No. 11575206).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Shi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shi, F., Lv, J., Cai, X. et al. Evaluation of a position-sensitive prototype detector unit for fast neutron imaging and spectroscopy. Radiat Detect Technol Methods 4, 222–240 (2020). https://doi.org/10.1007/s41605-020-00175-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41605-020-00175-z

Keywords

  • Fast neutron
  • Scatter camera
  • Silicon photomultiplier
  • Wavelength-shifting fiber
  • Center of gravity
  • Position resolution