Skip to main content

A simulation study of a high-resolution fast neutron imaging detector based on liquid scintillator loaded capillaries

Abstract

Background

At present, the highest spatial resolution of a fast neutron imaging detector, mainly determined by the range of secondary particles generated by fast neutrons, is about hundreds of microns. In view of the above inherent spatial resolution limitation, a capillary-based scintillation detector that can improve the spatial resolution of fast neutron imaging by recording and reconstructing the recoil proton track was developed.

Purpose

The purpose of this paper is to develop a detector for recognizing recoil proton events, reconstructing particle track and improving the position resolution with track reconstruction method to reconstruct the position of interaction.

Methods

The proposed detector consists of a 1000 × 1000 array of glass capillaries loaded with a high refractive index liquid scintillator. Each glass capillary was 10 μm in diameter and 5 cm in length. The recoil protons generated by the incident neutrons move within the detector and produce scintillation light within each capillary that they traverse. The light emitted from the capillary array can be recorded by employing an intensified CCD camera. We used Geant4 to simulate the detector performance and CERN ROOT analysis framework to record physical information of recoil proton, including position, energy deposition in each capillary and track length. Based on Hough transform, a rapid, computerized and efficient proton track reconstruction procedure was developed.

Conclusion

The recoil proton events display a continuous extended structure. The track reconstruction algorithms can reconstruct individual track precisely, and when the counting rate was relatively low, the track reconstruction results were in good agreement with simulation data. Moreover, for intensive overlap conditions, this algorithm also reconstructs periphery tracks with high rate of accuracy.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. L. Disdier, R.A. Lerche, J.L. Bourgade et al., Capillary detector with deuterated scintillator for inertial confinement fusion neutron images. Rev. Sci. Instrum. 75(6), 2134–2139 (2004)

    ADS  Article  Google Scholar 

  2. L. Disdier, A. Rouyer, I. Lantuéjoul et al., Inertial confinement fusion neutron images. Phys. Plasmas 13(5), 056317 (2006)

    ADS  Article  Google Scholar 

  3. I. Israelashvili, M. Cortesi, D. Vartsky et al., A comprehensive simulation study of a liquid-Xe detector for contraband detection. J. Instrum. 10(03), P03030 (2015)

    Article  Google Scholar 

  4. L. Ballabio, G. Gorini, J. Kallne, Energy spectrum of thermonuclear neutrons. Rev. Sci. Instrum. 68(1), 585–588 (1997)

    ADS  Article  Google Scholar 

  5. H. Brysk, Fusion neutron energies and spectra. Plasma Phys. 15(7), 611 (1973)

    ADS  Article  Google Scholar 

  6. R.S. Woolf, U. Bravar, J.S. Legere et al., Development of a real-time fast neutron imaging telescope (FNIT) for the detection of SNM, in IEEE Conference on Technologies for Homeland Security (IEEE), pp. 133–138

  7. U. Bravar, P.J. Bruillard, E.O. Flueckiger et al., Imaging solar neutrons below 10 MeV in the inner heliosphere, in Solar Physics and Space Weather Instrumentation. (International Society for Optics and Photonics, 2005), pp. 5901–59010I

  8. A. Breskin, I. Israelashvili, M. Cortesi et al., A novel liquid-Xenon detector concept for combined fast-neutrons and gamma imaging and spectroscopy. J. Instrum. 7(06), C06008 (2012)

    Article  Google Scholar 

  9. J.M. Ryan, J.R. Macri, M.L. McConnell et al., SONTRAC: a scintillating plastic fiber tracking detector for neutron and proton imaging spectroscopy. AIP Conf. Proc. AIP 576(1), 571–574 (2001)

    ADS  Article  Google Scholar 

  10. U. Bravar, J.R. Macri, M.L. Mcconnell et al., FNIT: the fast neutron imaging telescope for SNM detection. Proc. SPIE 6213(2), 62130G–62130G-9 (2006)

    Article  Google Scholar 

  11. J. Peel, N. Mascarenhas, W. Mengesha et al., Development of a directional scintillating fiber detector for 14 MeV neutrons. Nucl. Instrum. Methods Phys. Res. Sect. A 556(1), 287–290 (2006)

    ADS  Article  Google Scholar 

  12. J. Konijin, E. Kozarenko, I. Kreslo, Development of large-volume, high-resolution tracking detectors based on capillaries filled with liquid scintillator. Nucl. Instrum. Methods Phys. Res. Sect. A (Accel. Spectrom. Detect. Assoc. Equip.) 360(1-2), 7–12 (1995)

    ADS  Article  Google Scholar 

  13. P. Annis, A. Bay, L. Benussi, N. Bruski, S. Buontempo, C. Currat, N. D’Ambrosio, R. van Dantzig, J. Dupraz, A. Ereditato, J.P. Fabre, High-resolution tracking using large capillary bundles filled with liquid scintillator. Nucl. Instrum. Methods Phys. Res. Sect. A (Accel. Spectrom. Detect. Assoc. Equip.) 449(1-2), 60–80 (2000)

    ADS  Article  Google Scholar 

  14. P. Annis, A. Bay, D. Bonekamper et al., Tracking with capillaries and liquid scintillator. Nucl. Phys. B Proc. Suppl. 61(1002), 390–395 (1998)

    ADS  Article  Google Scholar 

  15. I. Mor, D. Vartsky, M. Brandis et al., Fast-neutron imaging spectrometer based on liquid scintillator loaded capillaries. J. Instrum. 7(04), C04021 (2012)

    Article  Google Scholar 

  16. I. Mor, D. Vartsky, V. Dangendorf et al., Automatic detection of recoil proton tracks and background rejection in liquid scintillator-micro-capillary-array fast neutron spectrometer. J. Instrum. 12(12), C12022 (2017)

    Article  Google Scholar 

  17. G.F. Knoll, Radiation detection and measurement (Wiley, Hoboken, 2010)

    Google Scholar 

  18. http://geant4.web.cern.ch/

  19. http://www.eljentechnology.com

  20. https://root.cern.ch/

  21. H.F. Li, D. Pao, R. Jayakumar, Improvements and systolic implementation of the Hough transformation for straight line detection. Pattern Recogn. 22(6), 697–706 (1989)

    Article  Google Scholar 

  22. S.A. Rodenko, A.G. Mayorov, Method for identifying low-energy antiprotons using the electromagnetic position-sensitive calorimeter of the PAMELA spectrometer. Bull. Lebedev Phys. Inst. 43(11), 323–327 (2016)

    ADS  Article  Google Scholar 

  23. Y. Song, J. Conner, X. Zhang et al., Monte Carlo simulation of a very high resolution thermal neutron detector composed of glass scintillator microfibers. Appl. Radiat. Isot. 108, 100–107 (2016)

    Article  Google Scholar 

  24. M. Martensson, Fast pattern recognition of ATLAS L1 track trigger for HL-LHC. SISSA (2017)

  25. L.A.F. Fernandes, M.M. Oliveira, Real-time line detection through an improved Hough transform voting scheme. Pattern Recogn. 41(1), 299–314 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Nature Science Foundation of China (Contract No. 11805066).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shifeng Sun.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Song, Z., Sun, S. & Ouyang, X. A simulation study of a high-resolution fast neutron imaging detector based on liquid scintillator loaded capillaries. Radiat Detect Technol Methods 4, 153–160 (2020). https://doi.org/10.1007/s41605-020-00164-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41605-020-00164-2

Keywords

  • Fast neutron imaging
  • Glass capillary
  • Track reconstruction
  • Hough transform