Skip to main content

OFHC copper substrates for niobium sputtering: comparison of chemical etching recipes

Abstract

Purpose

Niobium sputtered on copper has been a popular alternative approach for superconducting radio frequency (SRF) community in the last few decades. Comparing to bulk materials of a few millimeters, high-purity niobium of merely a few microns is sufficient to realize superconductivity on the coated surface. Being niobium thin film, it has been widely acknowledged that surface quality of the substrate plays a vital role in obtaining a superior niobium coating with excellent SRF performance. Therefore, proper chemical treatment of the substrate before coating is crucial and the ultimate goal is to create a smooth and defect-free surface. Prior to the design of a cavity etching system, the mechanism of SUBU as well as two industry-used solutions is studied in detail on samples.

Methods

Copper samples were first pre-treated by mechanical grinding to remove fabrication damages, obvious defects and visible impurities. Two chemical solutions widely used in industries were subsequently chosen to etch the samples. Finally, the established SUBU solution was used independently on these pre-treated samples for comparison. Surface morphology and etching rate were measured accordingly.

Results and conclusions

Mirror-like copper surface was created by using the SUBU solution thus qualified for subsequent niobium sputtering, while the other two solutions used in industries were less effective with nonideal surface morphology. The chemical reactions, the experimental requisites and the involved processes are extensively elucidated for all three solutions. Limitations for SUBU were examined, and the optimum ratio of the chemical bath volume to sample surface area was also determined. These investigations will serve as an important guidance for the development of a chemical etching system for elliptical copper cavities.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. H. Padamsee, J. Knobloch, T. Hays et al., RF Superconductivity for Accelerators, 2nd edn. (Wiley-VCH, Weinheim, 2008)

    Google Scholar 

  2. H. Padamsee, RF Superconductivity: Science, Technology, and Applications, 1st edn. (Wiley-VCH, Weinheim, 2009)

    Book  Google Scholar 

  3. A. Grassellino, A. Romanenko, D. Sergatskov, O. Melnychuk, Y. Trenikhina, A. Crawford, A. Rowe, M. Wong, T. Khabiboulline, F. Barkov, Nitrogen and argon doping of niobium for superconducting radio frequency cavities: a pathway to highly efficient accelerating structures. Supercond. Sci. Technol. 26(10), 102001 (2013). https://doi.org/10.1088/0953-2048/26/10/102001

    ADS  Article  Google Scholar 

  4. A. Grassellino, A. Romanenko, Y. Trenikhina, M. Checchin, M. Martinello, O.S. Melnychuk, S. Chandrasekaran, D.A. Sergatskov, S. Posen, A.C. Crawford, S. Aderhold, D. Bice, Unprecedented quality factors at accelerating gradients up to 45 MVm-1in niobium superconducting resonators via low temperature nitrogen infusion. Supercond. Sci. Technol. 30(9), 094004 (2017). https://doi.org/10.1088/1361-6668/aa7afe

    ADS  Article  Google Scholar 

  5. A.-M. Valente-Feliciano, Superconducting RF materials other than bulk niobium: a review. Supercond. Sci. Technol. 29(11), 113002 (2016). https://doi.org/10.1088/0953-2048/29/11/113002

    ADS  Article  Google Scholar 

  6. V. Palmieri, New Materials for Superconducting Radiofrequency Cavities, in: Proceedings of the 10th Workshop on RF Superconductivity, Tsukuba, Japan, September 6–11, 2001, no. 10 in International Conference on RF Superconductivity, JACoW, Geneva, Switzerland, pp. 162–169 (2001). http://accelconf.web.cern.ch/AccelConf/srf01/papers/fa008.pdf

  7. C. Benvenuti, S. Calatroni, I. Campisi, P. Darriulat, M. Peck, R. Russo, A.-M. Valente, Study of the surface resistance of superconducting niobium films at 1.5 GHz. Phys. C Supercond. 316(3), 153–188 (1999). https://doi.org/10.1016/S0921-4534(99)00207-5

    ADS  Article  Google Scholar 

  8. S. Calatroni, 20 years of experience with the Nb/Cu technology for superconducting cavities and perspectives for future developments. Phys. C Supercond. 441(1), 95–101 (2006). https://doi.org/10.1016/j.physc.2006.03.044

    ADS  Article  Google Scholar 

  9. W. Venturini Delsolaro, L. Arnaudon, K. Artoos, C. Bertone, J. Bousquet, N. Delruelle, M. Elias, J. Ferreira Somoza, F. Formenti, J. Gayde, J. Grenard, Y. Kadi, G. Kautzmann, Y. Leclercq, M. Mician, A. Miyazaki, E. Montesinos, V. Parma, G. Rosaz, K. Schirm, E. Siesling, A. Sublet, M. Therasse, L. Valdarno, D. Valuch, G. Vandoni, L. Williams, P. Zhang, Status of the SRF Systems at HIE-ISOLDE, in: Proceedings of International Conference on RF Superconductivity (SRF2015), Whistler, BC, Canada, September 13–18, 2015, no. 17 in International Conference on RF Superconductivity, JACoW, JACoW, Geneva, Switzerland, pp. 481–487 (2015). https://doi.org/10.18429/JACoW-SRF2015-TUBA01. http://srf2015.vrws.de/papers/tuba01.pdf

  10. A. Porcellato, G. Bisoffi, S. Gustaffsson, L. Boscagli, D. Carlucci, F. Chiurlotto, M. Morvillo, F. Stivanello, Experience with the ALPI Linac resonators. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 382(1), 121–124 (1996). https://doi.org/10.1016/S0168-9002(96)00409-3

    ADS  Article  Google Scholar 

  11. C. Benvenuti, S. Calatroni, P. Darriulat, M. Peck, A.-M. Valente, C. Hof, Study of the residual surface resistance of niobium films at 1.5 GHz. Phys. C Supercond. 351(4), 421–428 (2001). https://doi.org/10.1016/S0921-4534(00)01645-2

    ADS  Article  Google Scholar 

  12. G. Lanza, S. Calatroni, L. Ferreira, A. Gustafsson, M. Pasini, T. Trilhe, The HIE-ISOLDE superconducting cavities: surface treatment and niobium thin film coating, in: Proceedings of SRF2009, Berlin, Germany, September 20–25, 2009, no. 14 in International Conference on RF Superconductivity, JACoW, JACoW, Geneva, Switzerland, pp. 801–805 (2009). http://accelconf.web.cern.ch/AccelConf/SRF2009/papers/thppo075.pdf

  13. J. Adams, J. Birabeau, J. Guerin, S. Pousse, Procédés de préparation de surface de cuivre compatibles avec un dépôt de niobium réalisé par pulvérisation cathodique: Présentation d’un bain de polissage chimique répondant à ce critère, Technical Report, CERN-Technical-Note-85 (1985)

  14. J. Dai, P. He, Z. Li, Y. Ma, F. Yang, P. Zhang, The development of niobium sputtering on copper cavities at IHEP, in: International Conference on RF Superconductivity (SRF2019), Dresden, Germany, June 30–Jul. 5, 2019, JACoW, (2019). https://srf2019.vrws.de/papers/tup072.pdf

  15. S.-K. Chen, Y.-C. Yang, D.-Z. Guo, Study on the area ratio of Nb–Sn target for the preparation of Nb3Sn films. Radiat. Detect. Technol. Methods 3(3), 54 (2019). https://doi.org/10.1007/s41605-019-0134-y

    Article  Google Scholar 

  16. J.-G. Chen, Processing of waste solution from chemical etching for copper products. Environ. Prot. 4, 10–12 (1990). https://doi.org/10.14026/j.cnki.0253-9705.1900.04.006. (in Chinese)

    Article  Google Scholar 

  17. Y.-S. Lee, J.-S. Yoon, Y.-R. Jo, H. Lee, S.-K. Rha, Dilute \({\rm H_2SO_4}\) solution for copper seed cleaning in electroplating. Trans. Nonferrous Met. Soc. China 23(2), 562–566 (2013). https://doi.org/10.1016/S1003-6326(13)62500-5

    Article  Google Scholar 

  18. S. Zhang, Chemical etching or chemical polishing of copper and copper alloy with \({\rm H_2O_2}-{\rm H_2SO_4}\) mixed solution. Plat. Finish. 2, 21–27 (1983). (in Chinese)

    Google Scholar 

  19. K.H. Oh, H. Lim, H. Im, S. Jeong, Manufacturing process of copper microgrooves utilizing a novel optical fiber-based laser-induced etching technique. Int. J. Precis. Eng. Manuf. 10(3), 155–160 (2009). https://doi.org/10.1007/s12541-009-0061-9

    Article  Google Scholar 

  20. C. Pira, Evaluation of the copper polishing procedures in the framework of ARIES H2020 Collaboration (2018). https://agenda.infn.it/event/15746/contributions/

  21. S. Calatroni, R. Cosso, J. Bacher, F. Scalambrin, D. Lacarrère, G. Orlandi, C. Benvenuti, J. Dalin, A. Lasserre, M. Taufer, et al., Influence of copper substrate treatments on properties of niobium coatings, in: Proceedings of the Sixth Workshop on RF Superconductivity, CEBAF, Newport News, Virginia, USA, October 4–8, 1993, no. 6 in International Conference on RF Superconductivity, JACoW, JACoW, Geneva, Switzerland, pp. 687–695 (1993). http://accelconf.web.cern.ch/AccelConf/SRF93/papers/srf93i16.pdf

Download references

Acknowledgements

We would like to thank Dr. Chao Dong for helping with sample characterizations. We are especially grateful to LNER-team at IHEP for providing the laboratory and necessary facilities for chemical experiments. This work has been supported by the Platform for Advanced Photon Source Technology (PAPS) project and Pioneer “Hundred Talents Program” of Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pei Zhang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, F., Zhang, P., Dai, J. et al. OFHC copper substrates for niobium sputtering: comparison of chemical etching recipes. Radiat Detect Technol Methods 4, 139–146 (2020). https://doi.org/10.1007/s41605-020-00163-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41605-020-00163-3

Keywords

  • Chemical etching
  • Copper substrate
  • Dilute sulfuric acid
  • SUBU
  • Surface roughness