Skip to main content

Calibration of liquid argon detector with 83mKr and 22Na in different drift fields

Abstract

Introduction

Liquid noble gases are widely used as targets in low background search experiments, particularly in direct dark matter search experiments. 83mKr is an excellent low-energy internal calibration source for future larger liquid noble gas detectors.

Purpose

To calibrate liquid argon detector with 83mKr in different drift fields and to study the correlation between light yield and drift fields.

Method

A dual-phase LAr prototype detector was designed to study the 83mKr responses in liquid argon. 83mKr atoms are produced through the decay of 83Rb and introduced into the LAr detector through the circulating purification system.

Conclusion

We report that the light yield reaches 7.26 ± 0.02 pe/keV for 41.5 keV from 83mKr and 7.66 ± 0.01 pe/keV for 511 keV from 22Na, as a comparison. After stopping the fill, the rate decays of 83mKr are with a fitted half-life of 1.83 ± 0.11 h, which is consistent with the reported value of 1.83 ± 0.02 h. The light yield that varies with the drift electric field from 0 to 200 V/cm has also been reported.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. P.A.R. Ade et al., Planck 2013 results. XVI. Cosmological parameters. Astron. Astrophys. 571, A16 (2014)

    Article  Google Scholar 

  2. E. Aprile et al., Dark matter results from 225 Live Days of XENON100 data. Phys. Rev. Lett. 109, 181301 (2012)

    ADS  Article  Google Scholar 

  3. A. Tan et al., Dark matter results from first 98.7 days of data from the panda X-II experiment. Phys. Rev. Lett. 117, 121303 (2016)

    ADS  Article  Google Scholar 

  4. P. Agnes et al., Results from the first use of low radioactivity argon in a dark matter search. Phys. Rev. D 93, 081101 (2016)

    ADS  Article  Google Scholar 

  5. A. Zani, The WArP experiment: a double-phase argon detector for dark matter searches. Adv. High Energy Phys. 2014, 205107 (2014)

    Article  Google Scholar 

  6. M. Kuzniak et al., DEAP-3600 dark matter search. Nucl. Part. Phys. Proc. 273C275, 340 (2016)

    ADS  Article  Google Scholar 

  7. R. Agnese et al., New results from the search for low-mass weakly interacting massive particles with the CDMS low ion-ization threshold experiment. Phys. Rev. Lett. 116, 071301 (2016)

    ADS  Article  Google Scholar 

  8. J. Lewin, P. Smith, Review of mathematics, numerical fac-tors, and corrections for dark matter experiments based on elas-tic nuclear recoil. Astropart. Phys. 6, 87 (1996)

    ADS  Article  Google Scholar 

  9. E. Aprile et al., The XENON Collabora- tion. arXiv:1805.12562v1 (2018)

  10. D.S. Akerib et al., The LUX collaboration. Phys. Rev. Lett. 118, 021303 (2017)

    ADS  Article  Google Scholar 

  11. X. Cui et al., The panda X-II collaboration. Phys. Rev. Lett. 119, 181302 (2017)

    ADS  Article  Google Scholar 

  12. C.E. Aalseth et al., The darkside collaboration. Eur. Phys. J. Plus 133, 131 (2018)

    Article  Google Scholar 

  13. C.E. Aalseth, F. Acerbi, P. Agnes, et al., arX-iv:1707.08145v2 (2018)

  14. H. Zhang, et al., arXiv:1806.02229 (2018)

  15. J. Aalbers, L. Baudis, et al., arXiv:1606.07001v1

  16. W.H. Lippincott et al., Calibration of liquid argon and neon de-tectors with 83mKr. Phys. Rev. C. 81, 045803 (2010)

    ADS  Article  Google Scholar 

  17. D. Venos et al., 83mKr radioactive source based on 83Rb trapped in cation-exchange paper or in zeolite. Appl. Radiat. Isot. 63, 323 (2005)

    Article  Google Scholar 

  18. D. Venos et al., Precise energy of the weak 32 keV gamma transition observed in 83mKr decay. Nucl. Instrum. Meth. A 560, 352 (2006)

    ADS  Article  Google Scholar 

  19. S.C. Wu, Nuclear data sheets for A = 83. Nucl. Data Sheets 92, 893 (2001)

    ADS  Article  Google Scholar 

  20. R. Agnese et al., First results from the DarkSide-50 dark matter experiment at Laboratori Nazionali del Gran Sasso. Phys. Rev. B. 743, 456–466 (2015)

    Google Scholar 

  21. E. Aprile, et al., First observation of two-neutrino dou-ble electron capture in 124Xe with XENON1T. arX-iv:1904.11002v1 (2019)

  22. M. Zbořil, et al., Ultra-stable implanted 83Rb/83mKr electron sources for the energy scale monitoring in the KATRIN experiment. arXiv:1212.5016v2

  23. L.W. Kastens, S.B. Cahn, A. Manzur, D.N. McKinsey, Calibration of a liquid xenon detector with 83 Krm. Phys. Rev. C 80, 045809 (2009)

    ADS  Article  Google Scholar 

  24. M. Vikuiti, solutions.3m.com, (2012)

  25. W.M. Burton, B.A. Powell, Appl. Opt. 12, 87C89 (1973)

    Google Scholar 

  26. P.-X. Li, M.-Y. Guan, et al., Preliminary test results of LAr prototype detector. arXiv:1601.01075v1

  27. E.H. Bellamy et al., Absolute calibration and monitoring of a spectrometric channel using a photomultiplier. Nucl. Inst. Methods A 339, 468 (1994)

    ADS  Article  Google Scholar 

  28. ESTAR: stopping power and range tables for electrons, the compositional data for ARGON. National Institute of Standards and Technology. https://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html

  29. S. Kubota, M. Hishida, M. Suzuki, J. Ruan (Gen), Dynamical behavior of free electrons in the recombination process in liquid argon, krypton, and xenon. Phys. Rev. B 20, 3486 (1979)

    ADS  Article  Google Scholar 

  30. P. Agnes et al., DarkSide. J. Instrum. 12, P10015 (2017)

    Article  Google Scholar 

  31. P. Agnes et al., Measurement of the liquid argon energy re-sponse to nuclear and electronic recoils. Phys. Rev. D 97, 112005 (2018)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from supported by Ministry of Science and Technology of the People’s Republic of China (2016YFA0400304). We would like to thank Institute of Modern Physics of the Chinese Academy of Sciences and Shanghai jiao tong university for the support of the production of the 83Rb source. We also thank Y. Wang, a postdoctoral fellow at UCLA helped me in the early days of the detector design.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Xing Xiong.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xiong, WX., Guan, MY., Yang, CG. et al. Calibration of liquid argon detector with 83mKr and 22Na in different drift fields. Radiat Detect Technol Methods 4, 147–152 (2020). https://doi.org/10.1007/s41605-020-00162-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41605-020-00162-4

Keywords

  • Time projection chamber
  • Noble liquid detectors
  • Light yield
  • Liquid argon

PACS

  • 85.60.Ha
  • 14.60.Pq