Skip to main content

Modeling minimum detectable activity as a function of detector speed

Abstract

Purpose

A radiation detector’s sensitivity is important when designing survey plans. A measure of sensitivity is minimum detectable activity (MDA) which is the lowest amount of activity required for a signal to be distinguished above background. It has been known for some time that the efficiency of a moving detector can be improved by slowing the speed of travel. The Multi-Agency Radiation Survey and Site Investigation Manual describes but does not quantify this effect. Decreased efficiency at higher speeds results in higher MDAs and thus less sensitive detectors. The purpose of this research is to specifically define the relationship between detector MDA and speed.

Methods

Python was employed to calculate solid angle from equations developed by Masket and MCNP6.1 simulations were used to determine detection efficiency for a moving detector. Using these results efficiency as a function of detector travel speed was fit to a modified four-parameter logistic function (M4PL).

Results

The result of this work is a well defined relationship that can be used to predict MDA as a function of speed. The relationship can also be used by operators to determine the optimum speed needed to meet a predefined MDA.

Conclusion

Understanding this relationship between detector speed and efficiency will improve detector performance in remediation efforts and national security search operations. The M4PL function developed in this research allows optimizing remediation and wide-area radiation survey activities by setting maximum survey speed to meet a predetermined MDA.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Reprinted from Masket et al. [13]

Fig. 7

Reprinted from Masket et al. [13]

Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    E.W. Abelquist, W.S. Brown, Estimating minimum detectable concentrations achievable while scanning building surfaces and land areas. Health Phys. 76(1), 3–10 (1999). https://doi.org/10.1097/00004032-199901000-00002

    Article  Google Scholar 

  2. 2.

    T. Alecksen, R. Whicker, Scan MDCs for GPS-based gamma radiation systems. Health Phys. 111(2), S123–S132 (2016). https://doi.org/10.1097/hp.0000000000000517

    Article  Google Scholar 

  3. 3.

    B. Altshuler, B. Pasternack, Statistical measures of the lower limit of detection of a radioactivity counter. Health Phys. 9(3), 293–298 (1963). https://doi.org/10.1097/00004032-196303000-00005

    Article  Google Scholar 

  4. 4.

    B. Ayaz-Maierhafer, T.A. DeVol, Determination of absolute detection efficiencies for detectors of interest in homeland security. Nucl. Instr. Methods Phys. Res. A 579(1), 410–413 (2007). https://doi.org/10.1016/j.nima.2007.04.143

    ADS  Article  Google Scholar 

  5. 5.

    L.-E. De Geer, Currie detection limits in gamma-ray spectroscopy. Appl. Radiat. Isot. 61(2–3), 151–160 (2004). https://doi.org/10.1016/j.apradiso.2004.03.037

    Article  Google Scholar 

  6. 6.

    T. Goorley, M. James, T. Booth, F. Brown, J. Bull, L.J. Cox, J. Durkee, J. Elson, M. Fensin, R.A. Forster, J. Hendricks, H.G. Hughes, R. Johns, B. Kiedrowski, R. Martz, S. Mashnik, G. McKinney, D. Pelowitz, R. Prael, J. Sweezy, L. Waters, T. Wilcox, T. Zukaitis, Initial MCNP6 release overview. Nucl. Technol. 180(3), 298–315 (2017). https://doi.org/10.13182/NT11-135

    Article  Google Scholar 

  7. 7.

    I. Holl, E. Lorenz, G. Mageras, A measurement of the light yield of common inorganic scintillators. IEEE Trans. Nucl. Sci. 35(1), 105–109 (1988). https://doi.org/10.1109/23.12684

    ADS  Article  Google Scholar 

  8. 8.

    G. Knoll, Radiation Detection and Measurement, 4th edn. (Wiley, New York, 2010)

    Google Scholar 

  9. 9.

    G.H. Kramer, L.C. Burns, S. Guerriere, Monte carlo simulation of a scanning detector whole body counter and the effect of bomab phantom size on the calibration. Health Phys. 83(4), 526–533 (2002). https://doi.org/10.1097/00004032-200210000-00011

    Article  Google Scholar 

  10. 10.

    E. Lepel, B. Geelhood, W. Hensley, W. Quam, A field-deployable, aircraft-mounted sensor for the environmental survey of radionuclides. J. Radioanal. Nucl. Chem. 233(1–2), 211b–215 (1998). https://doi.org/10.1007/BF02389674

    Article  Google Scholar 

  11. 11.

    C. Marianno, Signal processing and its effect on scanning efficiencies for a field instrument for detecting low-energy radiation. Health Phys. 109(1), 78–83 (2015). https://doi.org/10.1097/HP.0000000000000298

    Article  Google Scholar 

  12. 12.

    C. Marianno, K. Higley, T. Palmer, Theoretical efficiencies for a FIDLER scanning hot particle contamination. Radiat. Protect. Manag. 17, 31–34 (2000)

    Google Scholar 

  13. 13.

    A. Masket, R. Macklin, H. Schmitt, Tables of solid angles and activations. Department of Energy. Technical Information Service Extension, Oak Ridge, ORNL-2170 ed (1956)

  14. 14.

    R. Pöllänen, H. Toivonen, K. Peräjärvi, T. Karhunen, T. Ilander, J. Lehtinen, K. Rintala, T. Katajainen, J. Niemela, M. Juusela, Radiation surveillance using an unmanned aerial vehicle. Appl. Radiat. Isot. 67(2), 340–344 (2009). https://doi.org/10.1016/j.apradiso.2008.10.008

    Article  Google Scholar 

  15. 15.

    G. Rossum, Python 3.6.1 reference manual. Python.org [online] (2017). https://docs.python.org/release/3.6.1/. Accessed 23 May 2018

  16. 16.

    R.C. Runkle, T.M. Mercier, K.K. Anderson, D.K. Carlson, Point source detection and characterization for vehicle radiation portal monitors. IEEE Trans. Nucl. Sci. 52(6), 3020–3025 (2005). https://doi.org/10.1109/TNS.2005.862910

    ADS  Article  Google Scholar 

  17. 17.

    E. Sakai, Recent measurements on scintillator-photodetector systems. IEEE Trans. Nucl. Sci. NS-34(1), 418–422 (1987). https://doi.org/10.1109/tns.1987.4337375

    ADS  Article  Google Scholar 

  18. 18.

    G.S. Sittampalam, N.P. Coussens, K. Brimacombe, et al. (eds.), Assay Guidance Manual [Internet] (Eli Lilly & Company and the National Center for Advancing Translational Sciences, Bethesda, 2004)

    Google Scholar 

  19. 19.

    U.S. Nuclear Regulatory Commission, Multi-agency radiation survey and site investigation manual (MARSSIM), revision 1. U.S. NRC, Washington; NUREG-1575 (2000)

  20. 20.

    G. Warner, R. Oliver, A whole-body counter for clinical measurements utilizing the shadow shield technique. Phys. Med. Biol. 11(1), 83 (1966). https://doi.org/10.1088/0031-9155/11/1/307

    Article  Google Scholar 

  21. 21.

    R. Whicker, P. Cartier, J. Cain, K. Milmine, M. Griffin, Radiological site characterizations: gamma surveys, gamma/226ra correlations, and related spatial analysis techniques. Health Phys. 95(5), S180–S189 (2008). https://doi.org/10.1097/01.hp.0000324206.39683.c4

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Craig Marianno.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Falkner, J., Marianno, C. Modeling minimum detectable activity as a function of detector speed. Radiat Detect Technol Methods 3, 25 (2019). https://doi.org/10.1007/s41605-019-0103-5

Download citation

Keywords

  • Counting efficiency
  • Detection limits
  • Monte Carlo
  • Operational topics