Skip to main content
Log in

The effect of Nb2O5 on fast neutron removal cross section, optical, and structural properties of some calcium borate oxide glasses containing Bi3+ ions

  • Original Paper
  • Published:
Radiation Detection Technology and Methods Aims and scope Submit manuscript

Abstract

Background

In recent years, the preparation of transparent glass in the visible region has led to the development of radiation shielding materials with measuring structure and optical properties. Also, the study on the interaction of neutron radiation with matter is important in the field of radiation protection.

Purpose

Preparation of transparent calcium and bismuth borate oxide glasses containing Nb5+ ions can be used as a neutron radiation shield and determine refractive index with different methods for this glass.

Methods

Niobium bismuth borate glasses with composition 60B2O3–20CaO–(20 − x)Bi2O3xNb2O5, where (x is in mol%, 0 ≤ x ≤ 10), have been prepared using conventional melt-quenching technique; the structure of each sample was studied by XRD, FTIR, and UV spectra chart analysis.

Results

XRD and FTIR showed that all glass samples were highly homogeneous and had structured with short-range-order/amorphous solids. The refractive index of each sample was estimated by charts of UV–Vis and FTIR, in addition to an empirical method, and we obtained values very close to each other. The refractive index values are relatively high, so this glass can be used in nonlinear studies as well as luminescence characterization. The macroscopic fast neutron removal cross sections (ΣR/ρ) have calculated, for all samples, and the highest value was in sample containing 2.5% niobium pentoxide.

Conclusion

Bismuth borate glass containing a few niobium pentoxide can be used as a protective shield of neutrons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Pan, A. Ghosh, J. Non Cryst. Solids 271, 157–161 (2000)

    Article  ADS  Google Scholar 

  2. C.E. Stone, A.C. Wright, R.N. Sinclair, S.A. Feller, M. Affatigato, D.L. Hogan, N.D. Nelson, C. Vira, Y.B. Dimitriev, E.M. Gattef, D. Ehrt, Phys. Chem. Glasses 41, 409–412 (2000)

    Google Scholar 

  3. C. Stehle, C. Vira, D. Vira, D. Hogan, S. Feller, M. Affatigato, Phys. Chem. Glasses 39, (2) (1998)

    Google Scholar 

  4. D.W. Hall, M.A. Newhouse, N.F. Borelli, W.H. Dumbaugh, D.L. Weidman, Appl. Phys. Lett. 54, 1293 (1989)

    Article  ADS  Google Scholar 

  5. A. Agarwal et al., Radiat. Eff. Defects Solids 158(11–12), 793–801 (2003)

    Article  ADS  Google Scholar 

  6. L.E. Alarcon et al., Appl. Surf. Sci. 254, 412–415 (2007)

    Article  ADS  Google Scholar 

  7. E.A. Davis, N.F. Mott, Philos. Mag. 179, 903–922 (1970)

    Article  ADS  Google Scholar 

  8. V. Dimitrov, T. Komatsu, Classification of simple oxides: a polarizability approach. J. Solid State Chem. 163(1), 100–112 (2002)

    Article  ADS  Google Scholar 

  9. H.A. Saudi, Am. J. Phys. Appl. 4(6), 140–144 (2016). https://doi.org/10.11648/j.ajpa.20160406.11

    Article  Google Scholar 

  10. Heba A. Saudy et al., World J. Condens. Matter. Phys. 3, 9–13 (2013)

    Article  ADS  Google Scholar 

  11. E. Yousef, M. Hotzel, C. Russel, J. Non Cryst. Solids 353, 333–338 (2007)

    Article  ADS  Google Scholar 

  12. Yasser B. Saddeek et al., J. Non Cryst. Solids 454, 13–18 (2016)

    Article  ADS  Google Scholar 

  13. P. Venkateswara Raoa et al., J. Optik 127, 2920–2923 (2016)

    Article  Google Scholar 

  14. L. Balachander et al., J. Sci. Asia 39, 278–283 (2013)

    Article  Google Scholar 

  15. Wallace D. Fragoso et al., J. Non Cryst. Solids 351, 3121–3126 (2005)

    Article  ADS  Google Scholar 

  16. M.E. Thomas, W.J. Tropf, Infrared refractive index and thermo-optic coefficient measurement at APL. Johns Hopkins APL Tech. Dig. 19(3), 293–297 (1998)

    Google Scholar 

  17. Nirmal Kaur et al., J. Non Cryst. Solids 429, 153–163 (2015)

    Article  ADS  Google Scholar 

  18. Ramesh Boda et al., J. Mater. Today Proc. 3, 1914–1922 (2015)

    Article  Google Scholar 

  19. E.C. Marquez et al., J. Phys. State Solid 191, 115–119 (2006)

    Article  ADS  Google Scholar 

  20. Y.D. Yiannopoulos et al., J. Phys. Chem. Glasses 42(3), 164 (2001)

    Google Scholar 

  21. E. Davis and N. Mott, vol. 22, no. 179, pp. 0903–0922 (1970)

  22. H.M. Gomaa, S.M. El Katlawy, Am. J. Mater. Synth. Process. 2(6), 94–96 (2017). https://doi.org/10.11648/j.ajmsp.20170206.14

    Article  Google Scholar 

  23. C.R. Kurkjian, J. Non Cryst. Solids 263–264, 207–212 (2000)

    Article  ADS  Google Scholar 

  24. N. Kaur, A. Khanna, M. Gónzález-Barriuso, F. González, B. Chen, J. Non Cryst. Solids 429, 153–163 (2015)

    Article  ADS  Google Scholar 

  25. H.A. Saudi, A.G. Mostafa, N. Sheta, S.U. El Kameesy, H.A. Sallam, Phys. B Condens. Matter. 406(21), 4000–4006 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. A. Saudi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saudi, H.A., Gomaa, H. The effect of Nb2O5 on fast neutron removal cross section, optical, and structural properties of some calcium borate oxide glasses containing Bi3+ ions. Radiat Detect Technol Methods 3, 7 (2019). https://doi.org/10.1007/s41605-018-0083-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41605-018-0083-x

Keywords

Navigation