Skip to main content

The superconducting magnet for ADS injection-I



As the world energetic demand is increasing day by day, the development of nuclear energy is of great necessity. However, the development is followed by a lot of tough questions like the management and storage of the nuclear waste. ADS, which is short for the accelerator-driven sub-critical system, may be a good choice because it can provide an efficient transmutations of nuclear waste. Many countries have carried out some research in related areas like the USA, Japan and China.

The superconducting magnet system

The cryomodule I (CM1) for China’s ADS Injection-I had been designed, fabricated and online tested. The CM1 is mainly composed of superconducting spoke cavities, beam position monitors, cryogenic system and superconducting magnets. The superconducting magnet system, which includes the magnet and current leads, is aimed at focusing and correcting the proton beams.


Seven superconducting magnets and current leads for CM1 are successfully designed and manufactured. Structural strength meets design specifications, the field meets the design demands, and the online test shows that the magnets can work in a rather stable state.

In this paper, the detailed design and installation of the superconducting magnets are presented.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. A.F. Zeller, J.C. Dekamp, A. Facco et al., IEEE Trans. Appl. Supercond. 12(1), 329–331 (2002)

    ADS  Google Scholar 

  2. F. Yan, Z. Li, C. Meng, Chin. Phys. C 38(2), 82–90 (2013)

    Google Scholar 

  3. W.L. Zhan, Bull. Chin. Acad. Sci 27(3), 375–381 (2012)

    Google Scholar 

  4. L. Han, S. Peng, J. Dai, Chin. Phys. C 36(8), 761–764 (2013)

    Google Scholar 

  5. Q.L. Peng, B. Wang, Y. Chen et al., Chin. Phys. C 38(3), 61–65 (2013)

    Google Scholar 

  6. A. Kalimov, G. Moritz, A.F. Zeller, IEEE Trans. Appl. Supercond. 14(2), 271–274 (2004)

    ADS  Google Scholar 

  7. S. Kurz, S. Russenschuck, Electr. Eng. 82(1), 1–10 (1999)

    Google Scholar 

  8. Q.L. Peng, F.Y. Xu, T. Wang, Nucl. Instrum. Methods Phys. Res. 764(1), 220–226 (2014)

    ADS  Google Scholar 

  9. M. Leghissa, N. Prölss. US, US 7741944 B2 [P] (20-10)

  10. C. Meuris, Cryogenics 53(53), 17–24 (2013)

    ADS  Google Scholar 

  11. S. Ito, T. Miki, M. Hamada et al., IEEE Trans. Appl. Supercond. 14(2), 1715–1718 (2004)

    ADS  Google Scholar 

  12. A. Barrarino, IEEE Trans. Appl. Supercond. 12(1), 1275–1280 (2002)

    ADS  Google Scholar 

  13. W.M. Joseph, H. Brueck et al., in AIP Conference Proceedings, 2012, pp. 565–572

  14. B. Wang, Q.L. Peng, X.C. Yang et al., Chin. Phys. C 38(6), 93–96 (2013)

    Google Scholar 

  15. W.N. Martin, Science 93(211), 119–121 (1967)

    Google Scholar 

  16. K. Chang, B. Zhao, Y. Lei et al., Cryogenics 25(78), 45–62 (2012)

    Google Scholar 

  17. V.R. Romanovskii, IEEE Trans. Appl. Supercond. 4(2), 1302–1305 (2004)

    ADS  Google Scholar 

  18. X.C. Yang, Q.L. Peng, F.Y. Xu, Chin. Phys. C 38(6), 93–96 (2013)

    Google Scholar 

  19. L.D. Innocenti, Sol. Obs. Tech. Interpret. 67(9), 71 (1992)

    Google Scholar 

  20. K. Kawano, K. Hamada, K. Okuno et al., Teion Kogaku 41(3), 105–112 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Xiang-chen Yang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, Xc., Peng, Ql., Cheng, D. et al. The superconducting magnet for ADS injection-I. Radiat Detect Technol Methods 3, 2 (2019).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI:


  • CM1
  • Superconducting magnet
  • Current leads


  • 29.20.Ej
  • 85.25.Am
  • 84.71.Ba