Skip to main content

Influence of energy bandwidth of pink beam on small angle X-ray scattering

Abstract

Background

Compared with the traditional monochromatic synchrotron radiation beam, a pink beam is a quasi-monochromatic beam which can be obtained by screening a harmonic of the undulator. The energy bandwidth (\(\Delta E{/}E\)) of a pink beam is about \(10^{-2}\). Despite the intensity gain from the quasi-monochromatic beam, the decrease in the energy resolution will lead the collected data to be smeared.

Purpose

To study the influence of the energy bandwidth on the small angle X-ray scattering (SAXS) by experiments and verify the feasibility of SAXS with a pink beam.

Method

Firstly, the influence of different energy bandwidths on SAXS has been studied by simulation and experiment. Then, TEM tests have been performed and compared with the experimental results.

Result

It has been shown that the scattering curves deviate slightly from the traditional monochromatic ones. This deviation does not influence the data processing for the maximum deviation of the results is just less than 2%. In return, the gain in the intensity (one to two orders of magnitude) makes the pink beam very important for the time-resolved SAXS. Further, the results of TEM and SAXS have shown an excellent agreement.

Conclusion

This work proves that the pink beam could be used for SAXS directly without a desmearing procedure. Benefiting from the increase in the beam intensity, the exposure time can be greatly shortened, thus enhancing the utilization efficiency of the synchrotron radiation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. P. Debye, A.M. Bueche, J. Appl. Phys. A 20(6), 518 (1949)

    ADS  Article  Google Scholar 

  2. G. Porod, Small Angle X-ray Scattering (Academic Press, London, 1982), pp. 17–51

    Google Scholar 

  3. J.S. Pedersen, Adv. Colloid Interface Sci. A 70, 171 (1997)

    Article  Google Scholar 

  4. D. Schneidman-Duhovny, S.J. Kim, A. Sali, BMC Struct. Biol. A 12, 17 (2012)

    Article  Google Scholar 

  5. Z.-H. Li, Chin. Phys. C A 37(10), 108002 (2013)

    ADS  Article  Google Scholar 

  6. S. Bratos et al., J. Synchrotron Radiat. A 21(Pt 1), 177 (2014)

    Article  Google Scholar 

  7. M. Rivers, Conference on Developments in X-Ray Tomography X. A, vol. 9967 (2016). https://doi.org/10.1117/12.2238240

  8. O. Bilsel, C.R. Matthews, Curr. Opin. Struct. Biol. A 16(1), 86 (2006)

    Article  Google Scholar 

  9. M. Bagge-Hansen et al., J. Appl. Phys. A 117(24), 245902 (2015)

    ADS  Article  Google Scholar 

  10. R.L. Gustavsen et al., J. Appl. Phys. A 121(10), 105902 (2017)

    ADS  Article  Google Scholar 

  11. R. Takahashi, T. Narayanan, T. Sato, J. Phys. Chem. Lett. A 8(4), 737 (2017)

    Article  Google Scholar 

  12. T.M. Willey et al., AIP Conference Proceedings, vol. 1793 (2017), p. 030012. https://doi.org/10.1063/1.4971470

  13. W. Wang et al., J. Appl. Crystallogr. A 48(6), 1935 (2015)

    Article  Google Scholar 

  14. B.R. Pauw, J. Phys. Condens. Matter. A 26(23), 239501 (2014)

    Article  Google Scholar 

  15. B.R. Pauw et al., J. Appl. Crystallogr. A 50(6), 1800 (2017)

    Article  Google Scholar 

  16. S. Chen, S.-N. Luo, J. Synchrotron Radiat. A 25(2), 496–504 (2018)

    Article  Google Scholar 

  17. E. Bergbäck Knudsen et al., J. Appl. Cryst. A 46(3), 679 (2013)

    Article  Google Scholar 

  18. D.I. Svergun, J. Appl. Cryst. A 25, 495 (1992)

    Article  Google Scholar 

  19. H.D. Mertens, D.I. Svergun, J. Struct. Biol. A 172(1), 128 (2010)

    Article  Google Scholar 

  20. O. Glatter, R. Klein, P. Lindner, Neutrons, X-ray and Light: Scattering Methods Applied to Soft Condensed Matter, 1st edn. (Elsevier, Amsterdam, 2002), pp. 391–420

    Google Scholar 

  21. A. Guinier, G. Fournet, Small Angle Scattering of X-Rays (Wiley, New York, 1955)

    MATH  Google Scholar 

  22. K. O’grady, A. Bradbury, J. Megn. Megn. Mater. A 39, 91 (1983)

    ADS  Article  Google Scholar 

  23. M. Bonini, E. Fratini, P. Baglioni, Mater. Sci. Eng. C A 27(5–8), 1377 (2007)

    Article  Google Scholar 

  24. B.R. Pauw, C. Kastner, A.F. Thunemann, J. Appl. Crystallogr. A 50(Pt 5), 1280 (2017)

    Article  Google Scholar 

  25. S.M. Sedlak, L.K. Bruetzel, J. Lipfert, J. Appl. Crystallogr. A 50(Pt 2), 621 (2017)

    Article  Google Scholar 

  26. J.S. Pedersen, D. Posselt, K. Mortensen, J. Appl. Crystallogr. A 23, 321 (1990)

    Article  Google Scholar 

  27. P.V. Konarev et al., J. Appl. Crystallogr. A 36, 1277 (2003)

    Article  Google Scholar 

  28. W. Szczerba et al., J. Appl. Crystallogr. A 50(Pt 2), 481 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the National Key R&D Plan of China (Grant No. 2016YFA0401300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Liu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Liang, Y., Wang, B. et al. Influence of energy bandwidth of pink beam on small angle X-ray scattering. Radiat Detect Technol Methods 3, 4 (2019). https://doi.org/10.1007/s41605-018-0047-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41605-018-0047-1

Keywords

  • Small angle X-ray scattering (SAXS)
  • Pink beam
  • Adjustable energy bandwidth
  • Smeared effect