Skip to main content
Log in

Development of a fast neutron spectrometer based on a plastic fiber array

  • Original Paper
  • Published:
Radiation Detection Technology and Methods Aims and scope Submit manuscript

Abstract

Objective

A three-dimensional position-sensitive fast neutron spectrometer is designed to measure fast neutron spectrum over 10 MeV.

Methods

The detector consists of a 16 \(\times \) 16 mutually perpendicular plastic scintillation fiber array coupled to \(2 \times 2\) Hamamatsu H8500C position-sensitive photomultiplier tubes by optical fibers. The fiber array is fabricated with 0.5 mm \(\times \) 3 mm fibers and 3-mm square fibers.

Results

Due to the combined application of different sizes of fibers, the detector can broaden energy dynamic range and meanwhile have good detection efficiency. The method of the combined application of different sizes of plastic fibers in the array may provide a solution to measure wider energy range of solar neutrons.

Conclusion

In this paper, we used FLUKA to simulate the performance of the detector model and report the results of experimental studies with neutrons from a pulsed D-T neutron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. R.P. Kelley, J.M. Lewis et al., Measurement of the fast neutron response for 4 He scintillation detectors using a coincidence scattering method. IEEE Trans. Nucl. Sci. 63, 1600–1607 (2016). doi:10.1109/TNS.2016.2521699

    Google Scholar 

  2. S.V. Kurudirek, N.E. Hertel et al., Development of ZnO nanorod-based scintillators grown under a low-temperature hydrothermal method for use in alpha-particle and thermal neutron detectors. IEEE Trans. Nucl. Sci. (2016). doi:10.1109/TNS.2016.2623648

    Google Scholar 

  3. M.J. Joyce et al., Real-time, fast neutron coincidence assay of plutonium with a 4-channel multiplexed analyzer and organic scintillators. IEEE Trans. Nucl. Sci. 61, 1340–1348 (2014). doi:10.1109/TNS.2014.2313574

    Article  ADS  Google Scholar 

  4. A.Q. Hu, M. Yu et al., Bilateral PIN diode for fast neutron dose measurement. IEEE Trans. Nucl. Sci. 61, 1311–1315 (2014). doi:10.1109/TNS.2014.2317757

    Article  ADS  Google Scholar 

  5. J. Glodo, U. Shirwadkar et al., Fast neutron detection with \(\text{ Cs }_{2} \text{ LiYCl }_{6}\). IEEE Trans. Nucl. Sci. 60, 864–870 (2013). doi:10.1109/TNS.2012.2227499

    Article  ADS  Google Scholar 

  6. C. Whitney, E. Johnson et al., DPA-based fast neutron dosimeter for the space environment. IEEE Trans. Nucl. Sci. 60, 830–836 (2013). doi:10.1109/TNS.2013.2248379

    Article  ADS  Google Scholar 

  7. F. Berthet, Y. Guhel et al., Influence of thermal and fast neutron irradiation on DC electrical performances of AlGaN/GaN transistors. IEEE Trans. Nucl. Sci. 59, 2556–2561 (2012). doi:10.1109/TNS.2012.2209894

    Article  ADS  Google Scholar 

  8. C. Roecker, A. Bernstein et al., Design of a transportable high efficiency fast neutron spectrometer. Nucl. Instrum. Methods A 826, 21–30 (2016). doi:10.1016/j.nima.2016.04.032

    Article  ADS  Google Scholar 

  9. A. Giaz, N. Blasi, Fast neutron measurements with 7 Li and 6 Li enriched CLYC scintillators. Nucl. Instrum. Methods A 825, 51–61 (2016). doi:10.1016/j.nima.2016.03.090

    Article  ADS  Google Scholar 

  10. M.J. Joyce, S. Agar et al., Fast neutron tomography with real-time pulse-shape discrimination in organic scintillation detectors. Nucl. Instrum. Methods A 834, 36–45 (2016). doi:10.1016/j.nima.2016.07.044

    Article  ADS  Google Scholar 

  11. J.M. Ryan, C.M. Castaneda et al., Design optimization. A scintillating plastic fiber tracking detector for neutron and proton imaging and spectroscopy. Nucl. Instrum. Methods A 496, 228–232 (2003). doi:10.1016/S0168-9002(98)01061-4

    Article  Google Scholar 

  12. J.M. Ryan, J.R. Macri et al., A prototype for SONTRAC, a scintillating plastic fiber tracking detector for neutron imaging and spectroscopy. IEEE Trans. Nucl. Sci. (1997). doi:10.1109/NSSMIC.1997.672725

    Google Scholar 

  13. U. Bravar, E.O. Flückiger et al., Atmospheric neutron measurements with the SONTRAC science model, in IEEE Nuclear Science Symposium Conference Record (2005). doi:10.1109/NSSMIC.2005.1596340

  14. P.-T. Bundesanstalt et al., Calculation of fast neutron dose in plastic-coated optical fibres. IEEE Trans. Nucl. Sci. 45, 1570–1575 (1998). doi:10.1109/23.685241

  15. R.S. Millera, J.R. Macri et al., SONTRAC: an imaging spectrometer for MeV neutrons. Nucl. Instrum. Methods A 505, 36–40 (2003). doi:10.1016/S0168-9002(03)01015-5

    Article  ADS  Google Scholar 

  16. B. Pirard, R.S. Woolf et al., Test and simulation of a fast neutron imaging telescope. Nucl. Instrum. Methods A 603, 406–414 (2009). doi:10.1016/j.nima.2009.02.012

    Article  ADS  Google Scholar 

  17. U. Bravar, J. Paul et al., Development of the fast neutron imaging telescope, in IEEE Nuclear Science Symposium Conference Record (2005). doi:10.1109/NSSMIC.2005.1596217

  18. U. Bravar, J. Paul et al., Design and testing of a position-sensitive plastic scintillator detector for fast neutron imaging. IEEE Trans. Nucl. Sci. 53, 3894–3903 (2006). doi:10.1109/TNS.2006.886046

    Article  ADS  Google Scholar 

  19. Y. Muraki, K. Koga et al., Measurement by FIB on the ISS: two emissions of solar neutrons detected? Adv. Astron. (2012). doi:10.1155/2012/379304

    Google Scholar 

  20. K. Koga, T. Goka et al., Measurement of high-energy neutrons at ISS by SEDA-AP. Astrophys. Space Sci. Trans. 2011(7), 411–416 (2011). doi:10.5194/astra-7-411-2011

    Article  ADS  Google Scholar 

  21. G. Battistoni, S. Muraro et al., The FLUKA code: description and benchmarking. IEEE Trans. Nucl. Sci. 56, 2947–2954 (2009). doi:10.1109/TNS.2009.2028025

    Article  ADS  Google Scholar 

  22. A. Ferrari, P.R. Sala, A. Fass‘o, J. Ranft, FLUKA: a multi-particle transport code (Program version 2005), in CERN-2005-10, INFN/TC-05/11, SLAC-R-773 (CERN, Geneva, 2005)

Download references

Acknowledgements

The author would like to thank An Guang-peng, Yu Bo-Xiang, members of Institute of High Energy Physics (IHEP) for their providing D–T neutron generator.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiu-Bo Qin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, FJ., Sun, LY., Zhuang, K. et al. Development of a fast neutron spectrometer based on a plastic fiber array. Radiat Detect Technol Methods 1, 9 (2017). https://doi.org/10.1007/s41605-017-0005-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41605-017-0005-3

Keywords

Navigation