Skip to main content

Study of linearity of LYSO crystal for the high energy cosmic radiation detection (HERD) facility

Abstract

The high energy cosmic-radiation detection (HERD) facility is a space mission designed for detecting cosmic ray (CR) electrons, \(\gamma \)-rays up to tens of TeV and CR nuclei from proton to iron up to several PeV. The main instrument of HERD is a 3-D imaging calorimeter (CALO) composed of nearly ten thousand lutetium yttrium orthosilicate (LYSO, with cerium doping) crystal cubes. A large dynamic range of single HERD CALO Cell (HCC) is necessary to achieve HERD’s PeV observation objectives, which means that the response of HCC should maintain a good linearity from minimum ionizing particle (MIP) calibration to PeV shower maximum. In order to study the linearity of HCC over such a large energy range, a beam test has been implemented at the E2 and E3 beam lines of BEPC. High intensity pulsed electron beam provided by E2 line is used for producing high energy density within HCC; \(\pi ^{+}\)/proton provided by E3 line are used for HCC calibration. The results show that no saturation effect occurs and the linearity of HCC is better than 10% from 30 MeV (1 MIP) to \(1.1\times 10^{3}\) TeV (energy density is 93 TeV/cm\(^{3})\), which can meet the requirement mentioned above.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. S.N. Zhang, O. Adriani, S. Albergo et al., Proc. SPIE Int. Soc. Opt. Eng. 9144, 91440X (2014). doi:10.1117/12.2055280

    Google Scholar 

  2. Y. Dong, Z. Quan, J. Wang et al., Proc. SPIE Int. Soc. Opt. Eng. 9905, 99056D (2016). doi:10.1117/12.2231804

    Google Scholar 

  3. J. Chen, L. Zhang, R.Y. Zhu, Nucl. Instrum. Methods A 572(1), 218–224 (2007)

    ADS  Article  Google Scholar 

  4. F. Yang, R. Mao, L. Zhang, R.Y. Zhu, Nucl. Instrum. Methods A 784, 105–110 (2015)

    ADS  Article  Google Scholar 

  5. R.Y. Zhu, Phys. Procedia 37(2), 372–383 (2012)

    ADS  Article  Google Scholar 

  6. A. Ferrari, P. Sala, A. Fasso, J. Ranft, FLUKA: a multi-particle transport code (Program version 2005), CERN-2005- 10, INFN/TC-05/11, SLAC-R-773

  7. K.G. Afanaciev, A.M. Artikov, V.Y. Baranov et al., Phys. Part. Nucl. Lett. 12(2), 319–324 (2015)

    Article  Google Scholar 

  8. A. Berra, V. Bonvicini, C. Cecchi et al., Nucl. Instrum. Methods A 763, 248–254 (2014)

    ADS  Article  Google Scholar 

  9. Kou Oishi on behalf of the COMET Collaboration, Development of electromagnetic calorimeter using GSO and LYSO crystals for the J-PARC muon-to-electron conversion search experiment, in Proceedings of Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), (IEEE, 2014) (8–15 Nov 2014)

  10. X.Y. Guan, Z.C. Zhang, W.Y. Zhang, Atomic Energy Sci. Technol. 43(10), 942–945 (2009). (in Chinese)

    Google Scholar 

  11. CUI Xiang-Zong, LI Jia-Cai, ZOU Xiang et. al., Test Beam Upgrade in IHEP and Its Applications. http://english.ihep.cas.cn/rh/rd/dep/sywlbtbf/sywlbtbf_articles/201110/W020120606406778866830.pdf. Accessed 22 Dec 2006

  12. S. Agostinelli, J. Allison, K. Amako et al., Nucl. Instrum. Methods A 506(3), 250–303 (2003)

    ADS  Article  Google Scholar 

  13. K.K. Hamamatsu Photonics, Photomultiplier Tubes: Basics and Applications, 3rd edn. (Hamamatsu Photonics K.K, Japan, 2007), pp. 54–58

  14. J.I. Hopkins, Rev. Sci. Instrum. 22(1), 29–33 (1951)

    ADS  Article  Google Scholar 

  15. J.B. Birks, The Theory and Practice of Scintillation Counting (Pergamon Press, Pergamon, 1964), pp. 447–450

  16. B.D. Rooney, J.D. Valentine, IEEE Trans. Nucl. Sci. 44(3), 509 (1997)

    ADS  Article  Google Scholar 

  17. W.W. Moses, S.A. Payne, W.S. Choong et al., IEEE Trans. Nucl. Sci. 55(3), 1049 (2008)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This research was supported by National Natural Science Foundation of China, Grant No. 11327303, 11473028 and 11675196; International Science and Technology Cooperation Program of China, Grant No. 2015DFA10140; Interdisciplinary Innovation Team Project of Chinese Academy of Sciences (Research Team of The High Energy cosmic-Radiation Detection); Qianren start-up, Grant No. 292012312D1117210; Strategic Pioneer Program in Space Science, Chinese Academy of Sciences, Grant No. XDA04075600; Youth Innovation Promotion Association of CAS, Grant No. 2014009. The authors would like to thank Dr. Sun Jianchao, Dr. Zhang Xuan, Dr. Zhang Xiaofeng and Dr. Ning Zhe for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhigang Wang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Quan, Z., Wang, Z., Xu, M. et al. Study of linearity of LYSO crystal for the high energy cosmic radiation detection (HERD) facility. Radiat Detect Technol Methods 1, 4 (2017). https://doi.org/10.1007/s41605-017-0004-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41605-017-0004-4

Keywords

  • HERD
  • Calorimeter
  • LYSO
  • Linearity
  • Beam test