Skip to main content

Advertisement

Log in

A modified Er,Cr:YSGG laser protocol associated with fluoride gel for controlling dentin erosion

  • Original Article
  • Published:
Lasers in Dental Science Aims and scope Submit manuscript

Abstract

Propose

Effective strategies to control the development of dental erosion are still needed. This study evaluated the effect of associating a modified Er,Cr:YSGG laser protocol with topical fluoride application on dentin erosion.

Methods

Sound and eroded dentin specimens (n = 10/substrate) were allocated into groups: control (no treatment); APF gel (1.23% F-, for 1 min, one application, removed with cotton roll); Er,Cr:YSGG laser P1 [0.25W, 20Hz, ≅ 6.5 J/cm2, 2 mm away from the surface, two irradiation of 10 s each, with sweeping movements, under 25% air, without water, with a sapphire tip measuring 750 μm in diameter and with of 6 mm (S75)]; Er,Cr:YSGG laser P2 (same settings with P1 except 1 mm away from the surface and ≅ 8.3 J/cm2); APF gel before Er,Cr:YSGG laser P1; APF gel before Er,Cr:YSGG laser P2. Specimens underwent a 5-day erosion-remineralization cycling. Erosion depth (surface loss — SL) was determined. Environmental scanning electron microscopy images (n = 2) were obtained. Data were statistically analyzed (α = 0.05).

Results

Sound substrate: APF gel presented lowest SL, differing significantly from control and other groups. Laser P1 and P2 had highest SL. Eroded substrate: laser P1 showed highest SL, differing significantly from all other groups. For the control, APF gel, and laser P1, the eroded substrates had significantly higher SL than the sound. For laser P2, SL from sound specimens was higher than the eroded. Melted areas were observed in the laser-treated groups.

Conclusions

Modified Er,Cr:YSGG laser parameter was unable to control progression of dentin erosion, not even when it was combined with fluoride.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

References

  1. Lussi A, Carvalho TS (2014) Erosive tooth wear: a multifactorial condition of growing concern and increasing knowledge. Monogr Oral Sci 25:1–15. https://doi.org/10.1159/000360380

    Article  PubMed  Google Scholar 

  2. Imfeld T (1996) Dental erosion. Definition, classification and links. Eur J Oral Sci 104(2 ( Pt 2)):151–155

    Article  Google Scholar 

  3. Schlueter N, Jaeggi T, Lussi A (2012) Is dental erosion really a problem? Adv Dent Res 24(2):68–71. https://doi.org/10.1177/0022034512449836

    Article  PubMed  Google Scholar 

  4. Amaechi BT, Higham SM (2001) In vitro remineralisation of eroded enamel lesions by saliva. J Dent 29(5):371–376

    Article  Google Scholar 

  5. Lussi A, Schlueter N, Rakhmatullina E, Ganss C (2011) Dental erosion--an overview with emphasis on chemical and histopathological aspects. Caries Res 45(Suppl 1):2–12. https://doi.org/10.1159/000325915

    Article  PubMed  Google Scholar 

  6. Ganss C, Hardt M, Blazek D, Klimek J, Schlueter N (2009) Effects of toothbrushing force on the mineral content and demineralized organic matrix of eroded dentine. Eur J Oral Sci 117(3):255–260. https://doi.org/10.1111/j.1600-0722.2009.00617.x

    Article  PubMed  Google Scholar 

  7. Scaramucci T, Borges AB, Lippert F, Zero DT, Aoki IV, Hara AT (2015) Anti-erosive properties of solutions containing fluoride and different film-forming agents. J Dent 43(4):458–465. https://doi.org/10.1016/j.jdent.2015.01.007

    Article  PubMed  Google Scholar 

  8. Murakami C, Bonecker M, Correa MS, Mendes FM, Rodrigues CR (2009) Effect of fluoride varnish and gel on dental erosion in primary and permanent teeth. Arch Oral Biol 54(11):997–1001. https://doi.org/10.1016/j.archoralbio.2009.08.003

    Article  PubMed  Google Scholar 

  9. Joao-Souza SH, Bezerra SJ, Borges AB, Aranha AC, Scaramucci T (2015) Effect of sodium fluoride and stannous chloride associated with Nd:YAG laser irradiation on the progression of enamel erosion. Lasers Med Sci 30(9):2227–2232. https://doi.org/10.1007/s10103-015-1791-9

    Article  PubMed  Google Scholar 

  10. Huysmans MC, Young A, Ganss C (2014) The role of fluoride in erosion therapy. Monogr Oral Sci 25:230–243. https://doi.org/10.1159/000360555

    Article  PubMed  Google Scholar 

  11. Whitford GM (2011) Acute toxicity of ingested fluoride. Monogr Oral Sci 22:66–80. https://doi.org/10.1159/000325146

    Article  PubMed  Google Scholar 

  12. Joao-Souza SH, Scaramucci T, Hara AT, Aranha AC (2015) Effect of Nd:YAG laser irradiation and fluoride application in the progression of dentin erosion in vitro. Lasers Med Sci 30(9):2273–2279. https://doi.org/10.1007/s10103-015-1802-x

    Article  PubMed  Google Scholar 

  13. Steiner-Oliveira C, Nobre-dos-Santos M, Zero DT, Eckert G, Hara AT (2010) Effect of a pulsed CO2 laser and fluoride on the prevention of enamel and dentine erosion. Arch Oral Biol 55(2):127–133. https://doi.org/10.1016/j.archoralbio.2009.11.010

    Article  PubMed  Google Scholar 

  14. Gao XL, Pan JS, Hsu CY (2006) Laser-fluoride effect on root demineralization. J Dent Res 85(10):919–923. https://doi.org/10.1177/154405910608501009

    Article  PubMed  Google Scholar 

  15. Tavares JG, Eduardo Cde P, Burnett LH Jr, Boff TR, de Freitas PM (2012) Argon and Nd:YAG lasers for caries prevention in enamel. Photomed Laser Surg 30(8):433–437. https://doi.org/10.1089/pho.2011.3104

    Article  PubMed  Google Scholar 

  16. Bezerra SJC, Trevisan LR, Viana IEL, Lopes RM, Pereira DL, Aranha ACC et al (2019) Er,Cr:YSGG laser associated with acidulated phosphate fluoride gel (1.23% F) for prevention and control of dentin erosion progression. Lasers Med Sci 34(3):449–455. https://doi.org/10.1007/s10103-018-2609-3

    Article  PubMed  Google Scholar 

  17. da Silva VRM, Viana IEL, Lopes RM, Zezell DM, Scaramucci T, Aranha ACC (2019) Effect of Er,Cr:YSGG laser associated with fluoride on the control of enamel erosion progression. Arch Oral Biol 99:156–160. https://doi.org/10.1016/j.archoralbio.2019.01.011

    Article  PubMed  Google Scholar 

  18. Viana Í, Alania Y, Feitosa S, Borges AB, Braga RR, Scaramucci T (2020) Bioactive materials subjected to erosion/abrasion and their influence on dental tissues. Oper Dent 45(3):E114–EE23. https://doi.org/10.2341/19-102-L

    Article  PubMed  Google Scholar 

  19. Magalhaes AC, Rios D, Machado MA, Da Silva SM, Lizarelli Rde F, Bagnato VS et al (2008) Effect of Nd:YAG irradiation and fluoride application on dentine resistance to erosion in vitro. Photomed Laser Surg 26(6):559–563. https://doi.org/10.1089/pho.2007.2231

    Article  PubMed  Google Scholar 

  20. Wiegand A, Magalhaes AC, Navarro RS, Schmidlin PR, Rios D, Buzalaf MA et al (2010) Effect of titanium tetrafluoride and amine fluoride treatment combined with carbon dioxide laser irradiation on enamel and dentin erosion. Photomed Laser Surg 28(2):219–226. https://doi.org/10.1089/pho.2009.2551

    Article  PubMed  Google Scholar 

  21. Dimitrios S, Norbert G (2018) Erbium lasers in operative dentistry—a literature review. Lasers Dental Sci 2

  22. de Freitas PM, Rapozo-Hilo M, Eduardo Cde P, Featherstone JD (2010) In vitro evaluation of erbium, chromium:yttrium-scandium-gallium-garnet laser-treated enamel demineralization. Lasers Med Sci 25(2):165–170. https://doi.org/10.1007/s10103-008-0597-4

    Article  PubMed  Google Scholar 

  23. Mjör I, Fejerskov O (1986) Human oral embryology and histology. Munksgaard, Copenhagen

    Google Scholar 

  24. Zezell DMAP, Albero FG, Cury JA, Bachmann L (2009) Effect of infrared lasers on chemical and crystalline properties of enamel. Caries Research 43:192

    Google Scholar 

  25. Bachmann LRK, Ana PA, Zezell DM, Craievich AF, Kellermann G (2009) Crystalline structure of human enamel irradiated with Er,Cr:YSGG laser. Laser Physics Letters 6:159–162

    Article  Google Scholar 

  26. Kumar P, Goswami M, Dhillon JK, Rehman F, Thakkar D, Bharti K (2016) Comparative evaluation of microhardness and morphology of permanent tooth enamel surface after laser irradiation and fluoride treatment - an in vitro study. Laser Ther 25(3):201–208. https://doi.org/10.5978/islsm.16-OR-16

    Article  PubMed  PubMed Central  Google Scholar 

  27. Geraldo-Martins VR, Lepri CP, Faraoni-Romano JJ, Palma-Dibb RG (2014) The combined use of Er,Cr:YSGG laser and fluoride to prevent root dentin demineralization. J Appl Oral Sci 22(5):459–464. https://doi.org/10.1590/1678-775720130570

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ramalho KM, Hsu CY, de Freitas PM, Aranha AC, Esteves-Oliveira M, Rocha RG et al (2015) Erbium lasers for the prevention of enamel and dentin demineralization: a literature review. Photomed Laser Surg 33(6):301–319. https://doi.org/10.1089/pho.2014.3874

    Article  PubMed  Google Scholar 

  29. Geraldo-Martins VR, Lepri CP, Palma-Dibb RG (2013) Influence of Er,Cr:YSGG laser irradiation on enamel caries prevention. Lasers Med Sci 28(1):33–39. https://doi.org/10.1007/s10103-012-1056-9

    Article  PubMed  Google Scholar 

  30. Visuri SR, Walsh JT Jr, Wigdor HA (1996) Erbium laser ablation of dental hard tissue: effect of water cooling. Lasers Surg Med 18(3):294–300. https://doi.org/10.1002/(sici)1096-9101(1996)18:3<294::aid-lsm11>3.0.co;2-6

    Article  PubMed  Google Scholar 

  31. Arantes BF, de Oliveira ML, Palma-Dibb RG, Faraoni JJ, de Castro DT, Geraldo-Martins VR et al (2019) Influence of Er,Cr:YSGG laser, associated or not to desensitizing agents, in the prevention of acid erosion in bovine root dentin. Lasers Med Sci 34(5):893–900. https://doi.org/10.1007/s10103-018-2669-4

    Article  PubMed  Google Scholar 

  32. Ganss C, Schlueter N, Klimek J (2007) Retention of KOH-soluble fluoride on enamel and dentine under erosive conditions--a comparison of in vitro and in situ results. Arch Oral Biol 52(1):9–14. https://doi.org/10.1016/j.archoralbio.2006.07.004

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the (FAPESP grant #2017/24714-3) for the scholarship provided for the first author of this manuscript and Foundation of the University of São Paulo, School of Dentistry (FFO Fundecto – PIBIC grant #001/2019) for the scholarship provided for the second author of this manuscript. The authors also would like to express their gratitude to DDS, MSc Diana Pereira Grandizoli for the assistance in the environmental scanning electron microscopic analyses.

Funding

This study is funded by the Foundation of the University of São Paulo, School of Dentistry (FFO Fundecto – PIBIC grant #001/2019) and São Paulo Research Foundation (FAPESP grant #2017/24714-3)

Author information

Authors and Affiliations

Authors

Contributions

Alana Cristina Machado: conception and design of the study, profilometer analysis and manuscript drafting

Géssica Trevizan Confortini: preparation of specimens and cycling

Ítallo Emídio Lira Viana Profilometer: analysis and manuscript review

Laís Gatti de Souza Pereira: preparation of specimens and cycling

Daísa de Lima Pereira: laser irradiation

Denise Maria Zezell: laser irradiation and manuscript review

Ana Cecília Corrêa Aranha: manuscript final review

Taís Scaramucci: conception and design of the study, data analysis, and manuscript final review

Corresponding author

Correspondence to Taís Scaramucci.

Ethics declarations

Conflict of interest

The authors declare no competing interests

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Machado, .C., Confortini, G.T., Viana, Í.E.L. et al. A modified Er,Cr:YSGG laser protocol associated with fluoride gel for controlling dentin erosion. Laser Dent Sci 5, 177–183 (2021). https://doi.org/10.1007/s41547-021-00133-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41547-021-00133-y

Keywords

Navigation