Skip to main content

Inhibition of S. mutans after nanoparticle mediated photodynamic antimicrobial chemotherapy on oral biofilm flow-cell system using laser or LED

Abstract

Purpose

This study tested the effect of photodynamic antimicrobial chemotherapy (PACT) on single-species biofilm grown in a flow-cell system using methylene blue associated with nanoparticles of β-cyclodextrin and light sources of red laser or light-emitting diode (LED).

Methods

The flow-cell system comprised chambers for biofilm cultivation with S. mutans under continuous hydrodynamic conditions containing BHI supplemented with 1% sucrose (w/v). Biofilms were divided into six groups (n = 6): C (control), P (photosensitizer + β-cyclodextrin), L (laser), LED (light-emitting diode), LP (laser + photosensitizer + β-cyclodextrin), and LEDP (LED + photosensitizer + β-cyclodextrin). Groups irradiated with laser were exposed to a low power light (λ = 660 nm, 320 J/cm2, 0.1 W, 9 J, 90 s). Groups irradiated with LEDs were exposed to 12 LEDs (λ = 660 nm, 8.1 J/cm2, 0.09 W/cm2, and 8.1 J for 90 s). The antibacterial potential of treatments was assessed by viable S. mutans counts of biofilm in selective medium. The vitality of intact biofilms was qualitatively evaluated by confocal laser scanning microscopy analysis (CLSM). The data were analyzed by Welch’s one-way ANOVA followed by Scheffe´s post-hoc tests (p < 0.05).

Results

No reductions in the number of S. mutans for C, P, L, and LED groups were found (p > 0.05). The number of S. mutans was significantly reduced in LP and LEDP groups (p < 0.05) and LP had the lowest microbial numbers (p < 0.05).

Conclusion

PACT protocol was effective in reducing S. mutans in the dynamic biofilm model tested using laser or LED. Furthermore, laser as a light source presented a better performance than LED.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Koo H, Falsetta ML, Klein MI (2013) The exopolysaccharide matrix: a virulence determinant of cariogenic biofilm. J Dent Res 92(12):1065–1073. https://doi.org/10.1177/0022034513504218

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Sheiham A, James WP (2015) Diet and dental caries: the pivotal role of free sugars reemphasized. J Dent Res 94(10):1341–1347

    Article  Google Scholar 

  3. 3.

    de Freitas MTM, Teixeira ST, Brito AMG, Araújo LR, Simone D, Junqueira ZIC (2017) Antimicrobial photodynamic therapy on Streptococcus mutans is altered by glucose in the presence of methylene blue and red LED. Photomed Laser Surg 35(5):239–245

    Article  Google Scholar 

  4. 4.

    Biwer A, Antranikian G, Heinzle E (2002) Enzymatic production of cyclodextrins. Appl Microbiol Biotechnol 59(6):609–617. https://doi.org/10.1007/s00253-002-1057-x

    Article  PubMed  Google Scholar 

  5. 5.

    Cieplik F, Tabenski L, Buchalla W, Maisch T (2014) Antimicrobial photodynamic therapy for inactivation of biofilms formed by oral key pathogens. Front Microbiol 5:405. https://doi.org/10.3389/fmicb.2014.00405

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Leal CRL, Alvarenga LH, Oliveira-Silva T, Kato IT, Godoy-Miranda B, Bussadori SK, Ribeiro MS, Prates RA (2017) Antimicrobial photodynamic therapy on Streptococcus mutans is altered by glucose in the presence of methylene blue and red LED. Photodiagnosis Photodyn Ther 19:1–4. https://doi.org/10.1016/j.pdpdt.2017.04.004

    Article  PubMed  Google Scholar 

  7. 7.

    Reis ACM, Regis WFM, Rodrigues LKA (2019) Scientific evidence in antimicrobial photodynamic therapy: An alternative approach for reducing cariogenic bacteria. Photodiagnosis Photodyn Ther 26:179–189. https://doi.org/10.1016/j.pdpdt.2019.03.012

    Article  PubMed  Google Scholar 

  8. 8.

    Kashef N, Hamblin MR (2017) Can microbial cells develop resistance to oxidative stress in antimicrobial photodynamic inactivation? Drug Resist Updat 31:31–42. https://doi.org/10.1016/j.drup.2017.07.003

    Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Andrade PF, Garlet GP, Silva JS, Fernandes PG, Milanezi C, Novaes AB Jr et al (2013) Adjunct effect of the antimicrobial photodynamic therapy to an association of non-surgical and surgical periodontal treatment in modulation of gene expression: a human study. J Photochem Photobiol B 26:119–125. https://doi.org/10.1016/j.jphotobiol.2013.06.012

    Article  Google Scholar 

  10. 10.

    Calixto GMF, Bernegossi J, Freitas LM, Fontana CR, Chorilli M (2016) Nanotechnology-based drug delivery systems for photodynamic therapy of cancer: a review. Molecules 21(3):342. https://doi.org/10.3390/molecules21030342

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Fumes AC, da Silva Telles PD, Corona SAM, Borsatto MC (2018) Effect of a PACT on Streptococcus mutans and Candida albicans present in the dental biofilm: systematic review. Photodiagnosis Photodyn Ther 21:363–366. https://doi.org/10.1016/j.pdpdt.2018.01.013

    Article  PubMed  Google Scholar 

  12. 12.

    Borges FMC, de-Melo MAS, Lima JMP, Zanin ICJ, Rodrigues LKA1, Nobre-dos-Santos M (2010) Evaluation of the effect of photodynamic antimicrobial therapy in dentin caries: a pilot in vivo study. Proc. SPIE 7549, Lasers in Dentistry XVI, 75490B. https://doi.org/10.1117/12.842339

  13. 13.

    Steiner-Oliveira C, Longo PL, Aranha AC, Ramalho KM, Mayer MP, de Paula EC (2015) Randomized in vivo evaluation of photodynamic antimicrobial chemotherapy on deciduous carious dentin. J Biomed Opt 20(10):108003. https://doi.org/10.1117/1.JBO.20.10.108003

    Article  PubMed  Google Scholar 

  14. 14.

    Esteban Florez FL, Mendonça de Oliveira MR, de Oliveira Júnior OB, Hiers RD, Khajotia SS, Pretel H (2018) Bioluminescence analysis of antibacterial photodynamic therapy using methylene blue mediated by low-intensitylevel laser against cariogenic biofilms. Photomed Laser Surg 36(5):258–265. https://doi.org/10.1089/pho.2017.4326

    Article  PubMed  Google Scholar 

  15. 15.

    Williams JA, Pearson GJ, Colles MJ, Wilson M (2004) The photo-activated antibacterial action of toluidine blue o in a collagen matrix and in carious dentine. Caries Res 38(6):530–536. https://doi.org/10.1159/000080582

    Article  PubMed  Google Scholar 

  16. 16.

    Tonon CC, Paschoal MA, Correia M, Spolidorio DM, Bagnato VS, Giusti JS et al (2015) Comparative effects of photodynamic therapy mediated by curcumin on standard and clinical isolate of Streptococcus mutans. J Contemp Dent Pract 16(1):1–6. https://doi.org/10.5005/jp-journals-10024-1626

    Article  PubMed  Google Scholar 

  17. 17.

    Neves PA, Lima LA, Rodrigues FC, Leitão TJ, Ribeiro CC (2016) Clinical effect of photodynamic therapy on primary carious dentin after partial caries removal. Braz Oral Res 30(1):S1806-83242016000100240. https://doi.org/10.1590/1807-3107BOR-2016.vol30.0047

    Article  PubMed  Google Scholar 

  18. 18.

    Usacheva MN, Teichert MC, Biel MA (2001) Comparison of the methylene blue and toluidine blue photobactericidal efficacy against gram-positive and gram-negative microorganisms. Lasers Surg Med 29(2):165–173. https://doi.org/10.1002/lsm.1105

    Article  PubMed  Google Scholar 

  19. 19.

    Fekrazad R, Seraj B, Chiniforush N, Rokouei M, Mousavi N, Ghadimi S (2017) Effect of antimicrobial photodynamic therapy on the counts of salivary streptococcus mutans in children with severe early childhood caries. Photodiagnosis Photodyn Ther 18:319–322. https://doi.org/10.1016/j.pdpdt.2017.03.007

    Article  PubMed  Google Scholar 

  20. 20.

    Sales LS, Guimarães GN, Wijesinghe GK, Silva Moreira KM, Joia F, Stipp RN, Azevedo Rodrigues LK, Nobre-Dos-Santos M, Steiner-Oliveira C (2019) Addition of hydrogen peroxide to methylene blue conjugated to β-cyclodextrin in photodynamic antimicrobial chemotherapy in S. mutans biofilm. Photodiagnosis Photodyn Ther 28:226–233. https://doi.org/10.1016/j.pdpdt.2019.09.004

    Article  PubMed  Google Scholar 

  21. 21.

    Santiago MPM, Gutknecht N, Martín-Carrillo N, Foronda P, Valladares B, Gómez NM (2020) In vitro study of photodynamic therapy with visible laser systems applied to fungal infections. Lasers Dent Sci 4:103–110

    Article  Google Scholar 

  22. 22.

    Tian G, Ren W, Yan L, Jian S, Gu Z, Zhou L et al (2013) Red-emitting upconverting nanoparticles for photodynamic therapy in cancer cells under near-infrared excitation. Small 9(11):1929–1928. https://doi.org/10.1002/smll.201201437

    Article  PubMed  Google Scholar 

  23. 23.

    Heidel JD (2006) Linear cyclodextrin-containing polymers and their use as delivery agents. Expert Opin Drug Deliv 3(5):641–646. https://doi.org/10.1517/17425247.3.5.641

    Article  PubMed  Google Scholar 

  24. 24.

    Pamp SJ, Sternberg C, Tolker-Nielsen T (2009) Insight into the microbial multicellular lifestyle via flow-cell technology and confocal microscopy. Cytometry A 75(2):90–103. https://doi.org/10.1002/cyto.a.20685

    Article  PubMed  Google Scholar 

  25. 25.

    Lima JP, Sampaio de Melo MA, Borges FM, Teixeira AH, Steiner-Oliveira C, Nobre dos Santos M, Rodrigues LK, Zanin IC (2009) Evaluation of the antimicrobial effect of photodynamic antimicrobial therapy in an in situ model of dentine caries. Eur J Oral Sci 117(5):568–574. https://doi.org/10.1111/j.1600-0722.2009.00662.x

    Article  PubMed  Google Scholar 

  26. 26.

    Rosentritt M, Hahnel S, Gröger G, Mühlfriedel B, Bürgers R, Handel G (2008) Adhesion of Streptococcus mutans to various dental materials in a laminar flow chamber system. J Biomed Mater Res B Appl Biomater 86(1):36–44. https://doi.org/10.1002/jbm.b.30985

    Article  PubMed  Google Scholar 

  27. 27.

    Vasconcelos MEOC, Cardoso AA, da Silva JN et al (2019) Combined effectiveness of β-cyclodextrin nanoparticles in photodynamic antimicrobial chemotherapy on in vitro oral biofilms. Photobiomodul Photomed Laser Surg 37(9):567–573. https://doi.org/10.1089/photob.2019.4669

    Article  PubMed  Google Scholar 

  28. 28.

    Schneider M, Kirfel G, Berthold M, Frentzen M, Krause F, Braun A (2012) The impact of antimicrobial photodynamic therapy in an artificial biofilm model. Lasers Med Sci 27(3):615–620. https://doi.org/10.1007/s10103-011-0998-7

    Article  PubMed  Google Scholar 

  29. 29.

    Takahashi N, Nyvad B (2016) Ecological hypothesis of dentin and root caries. Caries Res 50(4):422–431. https://doi.org/10.1159/000447309

    Article  PubMed  Google Scholar 

  30. 30.

    PaesLeme AF, Koo H, Bellato CM, Bedi G, Cury JA (2006) The role of sucrose in cariogenic dental biofilm formation-new insight. J Dent Res 85(10):878–887. https://doi.org/10.1177/154405910608501002

    Article  Google Scholar 

  31. 31.

    Wilson M (2004) Lethal photosensitisation of oral bacteria and its potential application in the photodynamic therapy of oral infections. Photochem Photobiol Sci 3(5):412–418. https://doi.org/10.1039/b211266c

    Article  PubMed  Google Scholar 

  32. 32.

    Nemezio MA, de Souza Farias SS, Borsatto MC, Aires CP, Corona SAM (2017) Effect of methylene blue-induced photodynamic therapy on a Streptococcus mutans biofilm model. Photodiagnosis Photodyn Ther 20:234–237. https://doi.org/10.1016/j.pdpdt.2017.10.025

    Article  PubMed  Google Scholar 

  33. 33.

    Méndez DAC, Gutierrez E, Dionísio EJ, Oliveira TM, Buzalaf MAR, Rios D, Machado MAAM, Cruvinel T (2018) Effect of methylene blue-mediated antimicrobial photodynamic therapy on dentin caries microcosms. Lasers Med Sci 33(3):479–487. https://doi.org/10.1007/s10103-017-2379-3

    Article  PubMed  Google Scholar 

  34. 34.

    de Oliveira AB, Ferrisse TM, Marques RS, de Annunzio SR, Brighenti FL, Fontana CR (2019) Effect of photodynamic therapy on microorganisms responsible for dental caries: a systematic review and meta-analysis. Int J Mol Sci 20(14):3585. https://doi.org/10.3390/ijms20143585

    Article  PubMed Central  Google Scholar 

  35. 35.

    Araújo NC, Fontana CR, Bagnato VS, Gerbi ME (2014) Photodynamic antimicrobial therapy of curcumin in biofilms and carious dentine. Lasers Med Sci 29(2):629–635. https://doi.org/10.1007/s10103-013-1369-3

    Article  PubMed  Google Scholar 

  36. 36.

    Tardivo JP, Del Giglio A, De Oliveira CS et al (2005) Methylene blue in photodynamic therapy: from basic mechanisms to clinical applications. Photodiagnosis Photodyn Ther 2(3):175–191. https://doi.org/10.1016/S1572-1000(05)00097-9

    Article  PubMed  Google Scholar 

  37. 37.

    Lang K, Kubat P, Lhotak P, Mosinger J, Wagnerova DM (2001) Photophysical properties and photoinduced electron transfer within host–guest complexes of 5,10,15,20-tetrakis (4-N-methylpyridyl) porphyrin with water-soluble calixarenes and cyclodextrins. Photochem Photobiol 74(4):558–565. https://doi.org/10.1562/0031-8655(2001)074%3c0558:ppapet%3e2.0.co;2

    Article  PubMed  Google Scholar 

  38. 38.

    Misba L, Kulshrestha S, Khan AU (2016) Antibiofilm action of a toluidine blue O-silver nanoparticle conjugate on Streptococcus mutans: a mechanism of type I photodynamic therapy. Biofouling 32(3):313–328. https://doi.org/10.1080/08927014.2016.1141899

    Article  PubMed  Google Scholar 

  39. 39.

    Melo MA, Rolim JP, Passos VF et al (2015) Photodynamic antimicrobial chemotherapy and ultraconservative caries removal linked for management of deep caries lesions. Photodiagnosis Photodyn Ther 12(4):581–586. https://doi.org/10.1016/j.pdpdt.2015.09.005

    Article  PubMed  Google Scholar 

  40. 40.

    Silva ZS Jr, Huang YY, de Freitas LF et al (2016) Papain gel containing methylene blue for simultaneous caries removal and antimicrobial photoinactivation against Streptococcus mutans biofilms. Sci Rep 6:33270. https://doi.org/10.1038/srep33270

    Article  PubMed  Google Scholar 

  41. 41.

    Deng Y, Chu D (2017) Coherence properties of different light sources and their effect on the image sharpness and speckle of holographic displays Sci. Rep 7:5893–5898

    Google Scholar 

  42. 42.

    Lee VA, Karthikeyan R, Rawls HR, Amaechi BT (2010) Anti-cariogenic effect of a cetylpyridinium chloride-containing nanoemulsion. J Dent 38(9):742–749. https://doi.org/10.1016/j.jdent.2010.06.001

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The illustration (Fig. 1) was created with the aid of “BioRender.com.”

Funding

This work was supported by the “Fundação de Amparo à Pesquisa do Estado de São Paulo” FAPESP (2017/03263–3), and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brasil (CAPES), Finance Code 001.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Carolina Steiner-Oliveira.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Moreira, K.M.S., Graziano, T.S., Sales, L.S. et al. Inhibition of S. mutans after nanoparticle mediated photodynamic antimicrobial chemotherapy on oral biofilm flow-cell system using laser or LED. Laser Dent Sci 5, 137–145 (2021). https://doi.org/10.1007/s41547-021-00128-9

Download citation

Keywords

  • Biofilms
  • Lasers
  • LED
  • Streptococcus mutans
  • Confocal laser scanning microscopy