Advertisement

Lasers in Dental Science

, Volume 3, Issue 2, pp 137–146 | Cite as

Evaluation of the bactericidal potential of 2780-nm ER,CR:YSGG and 940-nm diode lasers in the root canal system

  • Paul Erben
  • Ana M. Chang
  • Richard P. Darveau
  • Hanson Fong
  • James D. Johnson
  • Avina ParanjpeEmail author
Original Article
  • 16 Downloads

Abstract

Purpose

Successful endodontic therapy relies on chemomechanical debridement. Laser-assisted irrigation techniques are available for debridement. However, there are limited studies demonstrating the effectiveness of dual lasers for root canal disinfection. Hence, the aim of the present study is to determine if laser activation irrigation using the Er,Cr:YSGG and 940-nm diode laser is as effective as positive pressure needle irrigation using sodium hypochlorite (NaOCl) and ethylenediamine tetraacetic acid (EDTA).

Methods

Fifty-two caries-free premolars were divided into six groups: G1, sterile water via positive pressure irrigation; G2, EDTA and NaOCl via positive pressure irrigation; G3, sterile water and the Er,Cr:YSGG cleaning and disinfection step; G4, sterile water and the Er,Cr:YSGG cleaning and disinfection step followed by disinfection with the 940-nm diode; G5, sterile water and the Er,Cr:YSGG cleaning step followed by a disinfection step with the Er,Cr:YSGG and diode laser together; and G6, negative controls. S1 samples were validated in both negative and positive control groups via culturing. All teeth, except the negative controls, were inoculated with Enterococcus faecalis. S2 sampling after treatments was completed and tested for bacterial presence via culturing and SEM and CLSM analysis.

Results

The data demonstrated that the traditional irrigation group (G2) and the dual laser group (G5) showed the greatest percentage decrease in bacterial counts from the S1 to the S2 group.

Conclusions

The data demonstrates that the combination of the Er,Cr:YSGG and 940-nm diode laser wavelengths is safe and more effective than either laser alone and is comparable to needle irrigation with sodium hypochlorite and EDTA.

Keywords

Bacteria Disinfection Irrigation Dual laser Er,Cr:YSGG 

Notes

Acknowledgments

We acknowledge the support from the NIH to the UW W. M. Keck Microscopy Center (S10 OD016240).

Compliance with ethical standards

Conflict of interest

The authors report that a financial affiliation exists for this paper. The corresponding author, Dr. Paranjpe, received research grants from BIOLASE (Irvine, CA). Dr. Darveau reports that financial affiliations exist for this paper (Dr. Darveau was a consultant for BIOLASE).

References

  1. 1.
    Peters OA, Peters CI, Schonenberger K, Barbakow F (2003) ProTaper rotary root canal preparation: effects of canal anatomy on final shape analysed by micro CT. Int Endod J 36(2):86–92CrossRefGoogle Scholar
  2. 2.
    Torabinejad M, Handysides R, Khademi AA, Bakland LK (2002) Clinical implications of the smear layer in endodontics: a review. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 94(6):658–666.  https://doi.org/10.1067/moe.2002.128962 CrossRefGoogle Scholar
  3. 3.
    Mohammadi Z (2008) Sodium hypochlorite in endodontics: an update review. Int Dent J 58(6):329–341CrossRefGoogle Scholar
  4. 4.
    Gutarts R, Nusstein J, Reader A, Beck M (2005) In vivo debridement efficacy of ultrasonic irrigation following hand-rotary instrumentation in human mandibular molars. J Endod 31(3):166–170CrossRefGoogle Scholar
  5. 5.
    Sabins RA, Johnson JD, Hellstein JW (2003) A comparison of the cleaning efficacy of short-term sonic and ultrasonic passive irrigation after hand instrumentation in molar root canals. J Endod 29(10):674–678.  https://doi.org/10.1097/00004770-200310000-00016 CrossRefGoogle Scholar
  6. 6.
    Akcay M, Arslan H, Mese M, Durmus N, Capar ID (2016) Effect of photon-initiated photoacoustic streaming, passive ultrasonic, and sonic irrigation techniques on dentinal tubule penetration of irrigation solution: a confocal microscopic study. Clin Oral Investig 21:2205–2212.  https://doi.org/10.1007/s00784-016-2013-y CrossRefGoogle Scholar
  7. 7.
    Ayranci LB, Arslan H, Akcay M, Capar ID, Gok T, Saygili G (2016) Effectiveness of laser-assisted irrigation and passive ultrasonic irrigation techniques on smear layer removal in middle and apical thirds. Scanning 38(2):121–127.  https://doi.org/10.1002/sca.21247 CrossRefGoogle Scholar
  8. 8.
    Aminoshariae A, Kulild J (2015) Master apical file size—smaller or larger: a systematic review of microbial reduction. Int Endod J 48(11):1007–1022.  https://doi.org/10.1111/iej.12410 CrossRefGoogle Scholar
  9. 9.
    Lan WH, Liu HC (1996) Treatment of dentin hypersensitivity by Nd:YAG laser. J Clin Laser Med Surg 14(2):89–92.  https://doi.org/10.1089/clm.1996.14.89 CrossRefGoogle Scholar
  10. 10.
    Moritz A, Schoop U, Goharkhay K, Sperr W (1998) The CO2 laser as an aid in direct pulp capping. J Endod 24(4):248–251.  https://doi.org/10.1016/S0099-2399(98)80106-4 CrossRefGoogle Scholar
  11. 11.
    Gholami L, Moghaddam SA, Rigi Ladiz MA, Molai Manesh Z, Hashemzehi H, Fallah A, Gutknecht N (2018) Comparison of gingival depigmentation with Er,Cr:YSGG laser and surgical stripping, a 12-month follow-up. Lasers Med Sci 33(8):1647–1656.  https://doi.org/10.1007/s10103-018-2501-1 CrossRefGoogle Scholar
  12. 12.
    Birang E, Talebi Ardekani MR, Rajabzadeh M, Sarmadi G, Birang R, Gutknecht N (2017) Evaluation of effectiveness of photodynamic therapy with low-level diode laser in nonsurgical treatment of peri-implantitis. J Lasers Med Sci 8(3):136–142.  https://doi.org/10.15171/jlms.2017.25 CrossRefGoogle Scholar
  13. 13.
    Fallah A, Mirzaei A, Gutknecht N, Demneh AS (2017) Clinical effectiveness of low-level laser treatment on peripheral somatosensory neuropathy. Lasers Med Sci 32(3):721–728.  https://doi.org/10.1007/s10103-016-2137-y CrossRefGoogle Scholar
  14. 14.
    Granevik Lindstrom M, Wolf E, Fransson H (2017) The antibacterial effect of Nd:YAG laser treatment of teeth with apical periodontitis: a randomized controlled trial. J Endod 43(6):857–863.  https://doi.org/10.1016/j.joen.2017.01.013 CrossRefGoogle Scholar
  15. 15.
    Shahriari S, Kasraei S, Roshanaei G, Karkeabadi H, Davanloo H (2017) Efficacy of sodium hypochlorite activated with laser in intracanal smear layer removal: an SEM study. J Lasers Med Sci 8(1):36–41.  https://doi.org/10.15171/jlms.2017.07 CrossRefGoogle Scholar
  16. 16.
    Suk M, Bago I, Katic M, Snjaric D, Munitic MS, Anic I (2017) The efficacy of photon-initiated photoacoustic streaming in the removal of calcium silicate-based filling remnants from the root canal after rotary retreatment. Lasers Med Sci 32(9):2055–2062.  https://doi.org/10.1007/s10103-017-2325-4 CrossRefGoogle Scholar
  17. 17.
    Schulte-Lunzum R, Gutknecht N, Conrads G, Franzen R (2017) The impact of a 940 nm diode laser with radial firing tip and bare end fiber tip on Enterococcus faecalis in the root canal wall dentin of bovine teeth: an in vitro study. Photomed Laser Surg 35(7):357–363.  https://doi.org/10.1089/pho.2016.4249 CrossRefGoogle Scholar
  18. 18.
    Ertugrul AS, Tekin Y, Talmac AC (2017) Comparing the efficiency of Er,Cr:YSGG laser and diode laser on human beta-defensin-1 and IL-1beta levels during the treatment of generalized aggressive periodontitis and chronic periodontitis. J Cosmet Laser Ther 19(7):409–417.  https://doi.org/10.1080/14764172.2017.1334923 CrossRefGoogle Scholar
  19. 19.
    Martins MR, Franzen R, Depraet F, N. G (2018) Rationale for using a double-wavelength (940 nm + 2780 nm) laser in endodontics: literature overview and proof-of-concept. Lasers Dent Sci 2(1):29–41.  https://doi.org/10.1007/s41547-017-0017-9 CrossRefGoogle Scholar
  20. 20.
    Blanken J, De Moor RJ, Meire M, Verdaasdonk R (2009) Laser induced explosive vapor and cavitation resulting in effective irrigation of the root canal. Part 1: a visualization study. Lasers Surg Med 41(7):514–519.  https://doi.org/10.1002/lsm.20798 CrossRefGoogle Scholar
  21. 21.
    De Moor RJ, Blanken J, Meire M, Verdaasdonk R (2009) Laser induced explosive vapor and cavitation resulting in effective irrigation of the root canal. Part 2: evaluation of the efficacy. Lasers Surg Med 41(7):520–523.  https://doi.org/10.1002/lsm.20797 CrossRefGoogle Scholar
  22. 22.
    Matsumoto H, Yoshimine Y, Akamine A (2011) Visualization of irrigant flow and cavitation induced by Er:YAG laser within a root canal model. J Endod 37(6):839–843.  https://doi.org/10.1016/j.joen.2011.02.035 CrossRefGoogle Scholar
  23. 23.
    Hockett JL, Dommisch JK, Johnson JD, Cohenca N (2008) Antimicrobial efficacy of two irrigation techniques in tapered and nontapered canal preparations: an in vitro study. J Endod 34(11):1374–1377.  https://doi.org/10.1016/j.joen.2008.07.022 CrossRefGoogle Scholar
  24. 24.
    Haapasalo M, Orstavik D (1987) In vitro infection and disinfection of dentinal tubules. J Dent Res 66(8):1375–1379.  https://doi.org/10.1177/00220345870660081801 CrossRefGoogle Scholar
  25. 25.
    George R, Meyers IA, Walsh LJ (2008) Laser activation of endodontic irrigants with improved conical laser fiber tips for removing smear layer in the apical third of the root canal. J Endod 34(12):1524–1527.  https://doi.org/10.1016/j.joen.2008.08.029 CrossRefGoogle Scholar
  26. 26.
    Gordon W, Atabakhsh VA, Meza F, Doms A, Nissan R, Rizoiu I, Stevens RH (2007) The antimicrobial efficacy of the erbium, chromium:yttrium-scandium-gallium-garnet laser with radial emitting tips on root canal dentin walls infected with Enterococcus faecalis. J Am Dent Assoc 138(7):992–1002CrossRefGoogle Scholar
  27. 27.
    Pirnat S (2007) Versatility of an 810 nm diode laser in dentistry: an overview. Journal of Laser and Health Academy 2007(7):1–9Google Scholar
  28. 28.
    Linkert M, Rueden CT, Allan C, Burel JM, Moore W, Patterson A, Loranger B, Moore J, Neves C, Macdonald D, Tarkowska A, Sticco C, Hill E, Rossner M, Eliceiri KW, Swedlow JR (2010) Metadata matters: access to image data in the real world. J Cell Biol 189(5):777–782.  https://doi.org/10.1083/jcb.201004104 CrossRefGoogle Scholar
  29. 29.
    Parmar D, Hauman CH, Leichter JW, McNaughton A, Tompkins GR (2011) Bacterial localization and viability assessment in human ex vivo dentinal tubules by fluorescence confocal laser scanning microscopy. Int Endod J 44(7):644–651.  https://doi.org/10.1111/j.1365-2591.2011.01867.x CrossRefGoogle Scholar
  30. 30.
    Latham J, Fong H, Jewett A, Johnson JD, Paranjpe A (2016) Disinfection efficacy of current regenerative endodontic protocols in simulated necrotic immature permanent teeth. J Endod 42(8):1218–1225.  https://doi.org/10.1016/j.joen.2016.05.004 CrossRefGoogle Scholar
  31. 31.
    Kakehashi S, Stanley HR, Fitzgerald R (1969) The exposed germ-free pulp: effects of topical corticosteroid medication and restoration. Oral Surg Oral Med Oral Pathol 27(1):60–67CrossRefGoogle Scholar
  32. 32.
    Mohammadi Z, Shalavi S, Moeintaghavi A, Jafarzadeh H (2017) A review over benefits and drawbacks of combining sodium hypochlorite with other endodontic materials. Open Dent J 11:661–669.  https://doi.org/10.2174/1874210601711010661 CrossRefGoogle Scholar
  33. 33.
    Gutknecht N, Al-Karadaghi TS, Al-Maliky MA, Conrads G, Franzen R (2016) The bactericidal effect of 2780 and 940 nm laser irradiation on Enterococcus faecalis in bovine root dentin slices of different thicknesses. Photomed Laser Surg 34(1):11–16.  https://doi.org/10.1089/pho.2015.3960 CrossRefGoogle Scholar
  34. 34.
    Al-Karadaghi TS, Franzen R, Jawad HA, Gutknecht N (2015) Investigations of radicular dentin permeability and ultrastructural changes after irradiation with Er,Cr:YSGG laser and dual wavelength (2780 and 940 nm) laser. Lasers Med Sci 30(8):2115–2121.  https://doi.org/10.1007/s10103-015-1757-y CrossRefGoogle Scholar
  35. 35.
    Yang Y, Shen Y, Wang Z, Huang X, Maezono H, Ma J, Cao Y, Haapasalo M (2016) Evaluation of the susceptibility of multispecies biofilms in dentinal tubules to disinfecting solutions. J Endod 42(8):1246–1250.  https://doi.org/10.1016/j.joen.2016.05.011 CrossRefGoogle Scholar
  36. 36.
    Wang QQ, Zhang CF, Yin XZ (2007) Evaluation of the bactericidal effect of Er,Cr:YSGG, and Nd:YAG lasers in experimentally infected root canals. J Endod 33(7):830–832.  https://doi.org/10.1016/j.joen.2007.03.017 CrossRefGoogle Scholar
  37. 37.
    Yavari HR, Rahimi S, Shahi S, Lotfi M, Barhaghi MH, Fatemi A, Abdolrahimi M (2010) Effect of Er, Cr: YSGG laser irradiation on Enterococcus faecalis in infected root canals. Photomed Laser Surg 28(Suppl 1):S91–S96.  https://doi.org/10.1089/pho.2009.2539 CrossRefGoogle Scholar
  38. 38.
    Franzen R, Rashidisangsary B, Ozturan S, Vanweersch L, Gutknecht N (2015) Intrapulpal temperature changes during root surface irradiation with dual-wavelength laser (2780 and 940 nm): in vitro study. J Biomed Opt 20(1):018002.  https://doi.org/10.1117/1.JBO.20.1.018002 CrossRefGoogle Scholar
  39. 39.
    Hwang D, Fong H, Johnson JD, Paranjpe A (2017) Efficacy of different carriers for the triple antibiotic powder during regenerative endodontic procedures. Aust Endod J 44:208–214.  https://doi.org/10.1111/aej.12228 CrossRefGoogle Scholar
  40. 40.
    Vatkar NA, Hegde V, Sathe S (2016) Vitality of Enterococcus faecalis inside dentinal tubules after five root canal disinfection methods. J Conserv Dent 19(5):445–449.  https://doi.org/10.4103/0972-0707.190019 CrossRefGoogle Scholar
  41. 41.
    Sireesha A, Jayasree R, Vidhya S, Mahalaxmi S, Sujatha V, Kumar TSS (2017) Comparative evaluation of micron- and nano-sized intracanal medicaments on penetration and fracture resistance of root dentin—an in vitro study. Int J Biol Macromol 104(Pt B):1866–1873.  https://doi.org/10.1016/j.ijbiomac.2017.05.126 CrossRefGoogle Scholar
  42. 42.
    Schafer E, Bossmann K (2005) Antimicrobial efficacy of chlorhexidine and two calcium hydroxide formulations against Enterococcus faecalis. J Endod 31(1):53–56CrossRefGoogle Scholar
  43. 43.
    Siqueira JF Jr, Perez AR, Marceliano-Alves MF, Provenzano JC, Silva SG, Pires FR, Vieira GC, Rocas IN, Alves FR (2017) What happens to unprepared root canal walls: a correlative analysis using micro-computed tomography and histology/scanning electron microscopy. Int Endod J 51:501–508.  https://doi.org/10.1111/iej.12753 CrossRefGoogle Scholar
  44. 44.
    Ishizaki NT, Matsumoto K, Kimura Y, Wang X, Kinoshita J, Okano SM, Jayawardena JA (2004) Thermographical and morphological studies of Er,Cr:YSGG laser irradiation on root canal walls. Photomed Laser Surg 22(4):291–297.  https://doi.org/10.1089/pho.2004.22.291 CrossRefGoogle Scholar
  45. 45.
    Al-Karadaghi TS, Gutknecht N, Jawad HA, Vanweersch L, Franzen R (2015) Evaluation of temperature elevation during root canal treatment with dual wavelength laser: 2780 nm Er,Cr:YSGG and 940 nm diode. Photomed Laser Surg 33(9):460–466.  https://doi.org/10.1089/pho.2015.3907 CrossRefGoogle Scholar
  46. 46.
    Martins MR, Carvalho MF, Vaz IP, Capelas JA, Martins MA, Gutknecht N (2013) Efficacy of Er,Cr:YSGG laser with endodontical radial firing tips on the outcome of endodontic treatment: blind randomized controlled clinical trial with six-month evaluation. Lasers Med Sci 28(4):1049–1055.  https://doi.org/10.1007/s10103-012-1172-6 CrossRefGoogle Scholar

Copyright information

© This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2019

Authors and Affiliations

  1. 1.School of Dentistry, Department of EndodonticsUniversity of WashingtonSeattleUSA
  2. 2.Department of Oral Health SciencesUniversity of WashingtonSeattleUSA
  3. 3.Department of PeriodonticsUniversity of WashingtonSeattleUSA
  4. 4.Department of Material Science and EngineeringUniversity of WashingtonSeattleUSA

Personalised recommendations