Skip to main content

Advertisement

Log in

Outcome of 940-nm diode laser-assisted endodontic treatment of teeth with apical periodontitis: a retrospective study of clinical cases

  • Original Article
  • Published:
Lasers in Dental Science Aims and scope Submit manuscript

Abstract

Objective

The aim of this retrospective study of clinical cases was to compare outcomes of laser-assisted endodontic treatment/retreatment using 940-nm diode laser and EDTA versus conventional use of NaOCl and EDTA or citric acid with or without Ca(OH)2 intersessions in teeth with apical periodontitis.

Materials and methods

Database of medical documentation in a private practice was screened for root canal treatments done during 2014–2017. Then all files of cases with apical periodontitis (N = 46) were taken for retrospective evaluation and divided into two groups: group 1—940-nm diode laser-assisted endodontic treatments/retreatments (N = 24); group 2—conventional treatments/retreatments (N = 22). The outcome measure was radiographic change in apical bone density, using the periapical index (PAI). Unrelated specialist endodontist was asked to give PAI scores for radiographs done before treatment and after treatment—short- and long-term follow-up or both if present. All available data was assessed for statistical evaluation.

Results

No statistically significant difference of PAI score between groups before treatment (p = 0.943) and after long-term follow-up (p = 0.22) was found. Both groups exhibited a statistically significant decrease in PAI scores in short-term and in long-term follow-up evaluation (p < 0.001). With laser group having first follow-up evaluation significantly earlier (p < 0.001) with significantly lower PAI score (p = 0.002) than conventional. Significantly more treatments in laser group were done without any chemical antibacterial substances (NaOCl, Ca(OH)2 or antibiotics), while in conventional, at least one was always used.

Conclusion

Results of this study suggests that 940-nm diode laser-assisted endodontic protocol is a reliable alternative to conventional treatment, allowing a decrease of chemical irrigation solutions, intracanal medication, and systemic antibiotic use and initiating faster healing of periapical lesion. However, to have stronger evidence, well designed randomised clinical trial studies are needed with larger sample size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Torabinejad M, Anderson P, Bader J, Brown LJ, Chen LH, Goodcare CJ, Kattadiyil MT, Kutsenko D, Lozada J, Patel R, Petersen F, Puterman I, White SN (2007) Outcomes of root canal treatment and restoration, implant-supported single crowns, fixed partial dentures, and extraction without replacement: systematic review. J Prosthet Dent 98:285–311. https://doi.org/10.1016/S0022-3913(07)60102-4

    Article  PubMed  Google Scholar 

  2. Elemam RF, Pretty I (2011, 2011) Comparison of the success rate of endodontic Treatment and implant treatment. ISRN Dent:640509, 8 pages. https://doi.org/10.5402/2011/640509

  3. Friedman S, Mor C (2004) The success of endodontic therapy-healing and functionality. J Calif Dent Assoc 32(6):493–503

    PubMed  Google Scholar 

  4. Torabinejad M, Goodacre CJ (2006) Endodontic or dental implant therapy: The factors affecting treatment planning. J Am Dent Assoc 137:973–977

    Article  PubMed  Google Scholar 

  5. Zitzmann NU, Krastl G, Hecker H, Walter C, Weiger R (2009) Endodontics or implants? A review of decisive criteria and guidelines for single tooth restorations and full arch reconstructions. Int Endod J 42:757–774. https://doi.org/10.1111/j.1365-2591.2009.01561.x

    Article  PubMed  Google Scholar 

  6. Mian KI, Syngcuk K (2007) For Teeth Requiring Endodontic Treatment, What are the differences in outcomes of restored endodontically treated teeth compared to implant-supported restorations? Int J Oral Maxillofac Implants 22(5uPPL):96–116

    Google Scholar 

  7. Mian KI, Syngcuk K (2008) A review of factors influencing treatment planning decisions of single-tooth implants versus preserving natural teeth with nonsurgical endodontic therapy. J Endod 34(5):519–529

    Article  Google Scholar 

  8. Wolcott J, Meyers J (2006) Endodontic re-treatment or implants: a contemporary conundrum. Compend Contin Educ Dent 27:104–110

    PubMed  Google Scholar 

  9. Kojima K, Inamoto K, Nagamatsu K, Hara A, Nakata K, Morita I, Nakagaki H, Nakamura H (2004) Success rate of endodontic treatment of teeth with vital and nonvital pulps. A meta-analysis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 97:95–99

    Article  PubMed  Google Scholar 

  10. Ørstavik D, Ford TRP (2007) Apical periodontitis: Microbial infection and host responses. Essential endodontology: Prevention and treatment of apical periodontitis, (2nd ed.). Blackwell Munksgaard, Oxford, pp 1–9

  11. Baumgartner JC (2002) Endodontic microbiology. In: Walton RE, Torabinejad M (eds) Principle and practice of endodontics. W.B. Saunders Company, Philadelphia, pp 283–287

    Google Scholar 

  12. Siqueira JF Jr, Rocas IN, Alves FR, Silva MG (2009) Bacteria in the apical root canal of teeth with primary apical periodontitis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 107:721–726

    Article  PubMed  Google Scholar 

  13. Nair PNR, Henry S, Cano V, Vera J (2005) Microbial status of apical root canal system of human mandibular first molars with primary apical periodontitis after “one-visit” endodontic treatment. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 99(2):231–252. https://doi.org/10.1016/j.tripleo.2004.10.005

    Article  PubMed  Google Scholar 

  14. Nair PNR (2016) Pathogenesis of apical periodontitis and the causes of endodontic failures. Crit Rev Oral Biol Med 15(6):348–381. https://doi.org/10.1177/154411130401500604

    Article  Google Scholar 

  15. Trope M, Bergenholtz G (2002) Microbiological basis for endodontic treatment: can a maximal outcome be achieved in one visit? Endod Top 1:40–53

    Article  Google Scholar 

  16. Chávez de Paz LE, Dahlén G, Molander A, Möller Å, Bergenholtz G (2003) Bacteria recovered from teeth with apical periodontitis after antimicrobial endodontic treatment (2003). Int Endod J 36(7):500–508. https://doi.org/10.1046/j.1365-2591.2003.00686.x

    Article  PubMed  Google Scholar 

  17. Łysakowska ME, Ciebiada-Adamiec A, Sienkiewicz M, Sokołowski J, Banaszek K (2016) The cultivable microbiota of primary and secondary infected root canals, their susceptibility to antibiotics and association with the signs and symptoms of infection. Int Endod J 49:422–430. https://doi.org/10.1111/iej.12469

    Article  PubMed  Google Scholar 

  18. Siqueira JF (2001) Aetiology of root canal treatment failure: why well treated teeth can fail. Int Endod J 34:1–10

    Article  PubMed  Google Scholar 

  19. Shuping G, Ørstavik D, Sigurdsson A, Trope M (2000) Reduction of intracanal bacteria using nickel-titanium rotary instrumentation and various medications. J Endod 26:751–755

    Article  PubMed  Google Scholar 

  20. Gulabivala K, Patel B, Evans G, Ng YL (2005) Effects of mechanical and chemical procedures on root canal surfaces. Endod Top 10:103–122

    Article  Google Scholar 

  21. Byström A, Sundqvist G (1981) Bacteriologic evaluation of the efficacy of mechanical root canal instrumentation in endodontic therapy. Scand J Dent Res 89:321–328

    PubMed  Google Scholar 

  22. Dalton BC, Ørstavik D, Phillips C, Pettiette M, Trope M (1998) Bacterial reduction with nickel-titanium rotary instrumentation. J Endod 24:763–767

    Article  PubMed  Google Scholar 

  23. Peters OA, Schonenberger K, Laib A (2001) Effects of four Ni-Ti preparation techniques on root canal geometry assessed by micro computed tomography. Int Endod J 34:221–230

    Article  PubMed  Google Scholar 

  24. de Souza WASB, Gonçalves PS, Rasquin LC, de Carvalho FB (2015) Analysis of cleaning capacity of three instrumentation techniques in flattened root canals. Diaphanization study. Revista Bahiana de Odontologia 6(1):5–13. https://doi.org/10.17267/2238-2720revbahianaodonto.v5i1.597

    Google Scholar 

  25. Violich DR, Chandler NP (2010) The smear layer in endodontics—a review. Int Endod J 43:2–15. https://doi.org/10.1111/j.1365-2591.2009.01627.x

    Article  PubMed  Google Scholar 

  26. Haapasalo M, Shen Y, Qian W, Gao Y (2009) Irrigation in endodontics. Dent Clin N Am 54(2):291–312

    Article  Google Scholar 

  27. Crane AB (1920) A practicable root canal technique. Lea & Febinger, Philadelphia

    Google Scholar 

  28. Wong DT, Cheung GS (2014) Extension of bactericidal effect of sodium hypochlorite into dentinal tubules. J Endod 40:825–829

    Article  PubMed  Google Scholar 

  29. Baumgartner JC, Mader CL (1987) A scanning electron microscopic evaluation of four root canal irrigation regimens. J Endod 13(4):147–157

    Article  PubMed  Google Scholar 

  30. Siqueira JRJF, Machado AG, Silveira RM, Lopes HP, De Uzeda M (1997) Evaluation of the effectiveness of sodium hypochlorite used with three irrigation methods in the elimination of Enterococcus faecalis from the root canal, in vitro. Int Endod J 30:279–282

    Article  PubMed  Google Scholar 

  31. Clarkson RM, Moule AJ (1998) Sodium hypochlorite and its use as an endodontic irrigant. Aust Dent J 43(4):250–256

    Article  PubMed  Google Scholar 

  32. Athanassiadis B, Abbott PV, Walsh LJ (2007) The use of calcium hydroxide, antibiotics and biocides as antimicrobial medicaments in endodontics. Aust Dent J 52(1 Suppl):S64–S82

    Article  PubMed  Google Scholar 

  33. Siqueira JF Jr, Lopes HP (1999) Mechanisms of antimicrobial activity of calcium hydroxide: a critical review. Int Endod J 32:361–369

    Article  PubMed  Google Scholar 

  34. Goldman M, Goldman LB, Cavaleri R, Bogis J, Lin PS (1982) The efficacy of several endodontic irrigating solutions: a scanning electron microscopic study: part 2. J Endod 8(11):487–492

    Article  PubMed  Google Scholar 

  35. Haapasalo HK, Siren EK, Waltimo TM et al (2000) Inactivation of local root canal medicaments by dentine: an in vitro study. Int Endod J 33:126–131

    Article  PubMed  Google Scholar 

  36. Love RM, Jenkinson HF (2002) Invasion of dentinal tubules by oral bacteria. Crit Rev Oral Biol Med 13:171–183. https://doi.org/10.1177/154411130201300207

    Article  PubMed  Google Scholar 

  37. Kouchi Y, Ninomiya J, Yasuda H, Fukui K, Moriyama T, Okamoto (December 1980) Location of Strepptococcus mutans in the dentinal tubules of open infected root canals. J Dent Res 59(12):2038–2046. https://doi.org/10.1177/00220345800590120301

    Article  PubMed  Google Scholar 

  38. Ando N, Hoshino E (1990) Predominant obligate anaerobes invading the deep layers of root canal dentin. Int Endod J 23:20–27

    Article  PubMed  Google Scholar 

  39. Peters LB, Wesselink PR, Buijs JF, van Winkelhoff AJ (2001) Viable bacteria in root dentinal tubules of teeth with apical periodontitis. J Endod 27:76–81

    Article  PubMed  Google Scholar 

  40. Berutti E, Marini R, Angeretti A (1997) Penetration ability of different irrigants into dentinal tubules. J Endod. 23(12):725–727

    Article  PubMed  Google Scholar 

  41. Zou L, Shen Y, Li W, Haapasalo M (2010) Penetration of sodium hypochlorite into dentin. J Endod 36:793–796

    Article  PubMed  Google Scholar 

  42. Sim TP, Knowles JC, Ng YL et al (2001) Effect of sodium hypochlorite on mechanical properties of dentine and tooth surface strain. Int Endod J 34:120–132

    Article  PubMed  Google Scholar 

  43. Marending M, Luder HU, Brunner TJ, Knecht S, Stark WJ, Zehnder M (2007) Effect of sodium hypochlorite on human root dentine–mechanical, chemical and structural evaluation. Int Endod J 40:786–793

    Article  PubMed  Google Scholar 

  44. Lipski M, Buczkowska-Radlińska J, Góra M (2012) Loss of sight caused by calcium hydroxide paste accidentally splashed into the eye during endodontic treatment: case report. J Can Dent Assoc 78:c57

    PubMed  Google Scholar 

  45. Hulsmann M, Hahn W (2000) Complications during root canal irrigation: literature review and case reports [review]. Int Endod J 33:186–193

    Article  PubMed  Google Scholar 

  46. Spencer HR, Ike V, Brennan PA (2007) Review: the use of sodium hypochlorite in endodontics—potential complications and their management. Br Dent J 202:555–559. https://doi.org/10.1038/bdj.2007.374

    Article  PubMed  Google Scholar 

  47. Moritz A, Gutknecht N, Goharkhay K, Schoop U, Sperr W (1997) In-vitro irradiation of infected root canals with a diode laser: results of microbiologic, infrared spectrometric and stain penetration examination. Quintessence Int 28(3):205–209

    PubMed  Google Scholar 

  48. Moritz A, Gutknecht N, Schoop U, Goharkhay K, Doertbudak O, Sperr W (1997) Irradiation of infected root canals with a diode laser in vivo: results of microbiological examinations. Lasers Surg Med 21:221–226

    Article  PubMed  Google Scholar 

  49. Gutknecht N, Moritz A, Conrads G, Lampert F (1997) The diode laser and its bactericidal effect in root canals: an in vitro study. Endodontie 3:217–222

    Google Scholar 

  50. Gutknecht N, Franzen R, Schippers M, Lampert F (2004) Bactericidal effect of a 980-nm diode-laser in the root canal wall dentin bovine teeth. J Clin Laser Med Surg 22:9–13

    Article  PubMed  Google Scholar 

  51. Gutknecht N, Gogswaardt D, Conrads G, Apel C, Schubert C, Lampert F (2000) Diode laser radiation and its bactericidal effect in root canal wall dentin. J Clin Las Med Surg 18(2):57–60

    Article  Google Scholar 

  52. Gutknecht N, Al-Karadaghi TS, Al-Maliky MA, Conrads G, Franzen R (2016 Jan) The Bactericidal effect of 2780 and 940 nm laser irradiation on enterococcus faecalis in bovine root dentin slices of different thicknesses. Photomed Laser Surg 34(1):11–16. https://doi.org/10.1089/pho.2015.3960

    Article  PubMed  Google Scholar 

  53. Gutknecht N (2008) Lasers in endodontics. Journal of the Laser and Health Academy 4(1):1–5

    Google Scholar 

  54. Gutknecht N, Kaiser F, Hassan A, Lampert F (1996) Long-term clinical evaluation of endodontically treated teeth by Nd: YAG lasers. J Clin Laser Med Surg 14(1):7–11

    Article  PubMed  Google Scholar 

  55. Gutknecht N, Alt T, Slaus G, Bottenberg P, Rosseels P, Lauders S, Lampert F (2002) A clinical comparison of the bactericidal effect of the diode laser and 5% sodium hypochlorite in necrotic root canals. J Oral Laser Appl 3(2):151–157

    Google Scholar 

  56. Saydjari Y, Kuypers T, Gutknecht N (2016) Laser application in dentistry: irradiation effects of Nd: YAG 1064 nm and diode 810 nm and 980 nm in infected root canals—a literature overview. Biomed Res Int 2016:8421656. https://doi.org/10.1155/2016/8421656

    Article  PubMed  PubMed Central  Google Scholar 

  57. Schoop U, Kluger W, Moritz A, Nedjelik N, Georgopoulos A, Sperr W (2004) Bactericidal effect of different laser systems in the deep Layers of dentin. Lasers Surg Med 35:111–116. https://doi.org/10.1002/lsm.20026

    Article  PubMed  Google Scholar 

  58. Schoop U, Kluger W, Dervisbegovic S, Goharkhay K, Wernisch J, Georgopoulos A, Sperr W, Moritz A (2006) Innovative wavelengths in endodontic treatment. Lasers Surg Med 38:624–630

    Article  PubMed  Google Scholar 

  59. Beer F, Buchmair A, Wernisch J, Georgopoulos A, Moritz A (2012) Comparison of two diode lasers on bactericidity in root canals—an in vitro study. Lasers Med Sci 27:361–364

    Article  PubMed  Google Scholar 

  60. Schulte-Lunzum R, Gutknecht N, Conrads G, Franzen R (2017) The impact of a 940 nm diode laser with radial firing tip and bare end Fiber tip on Enterococcus faecalis in the root canal wall dentin of bovine teeth: an in vitro study. Photomed Laser Surg 35:357–363. https://doi.org/10.1089/pho.2016.4249

    Article  PubMed  Google Scholar 

  61. Kreisler M, Kohnen W, Beck M, Al Haj H, Christoffers AB, Gotz H, Duschner H, Jansen B, D'Hoedt B (2003) Efficacy of NaOCl/H2O2 irrigation and GaAlAs laser in decontamination of root canals in vitro. Lasers Surg Med 32(3):189–196

    Article  PubMed  Google Scholar 

  62. Benedicenti S, Cassanelli C, Signore A, Ravera G, Angiero F (2008) Decontamination of root canals with the gallium-aluminum-arsenide laser: an in Vitro study. Photomed Laser Surg 26(4):367–370. https://doi.org/10.1089/pho.2008.2158

    Article  PubMed  Google Scholar 

  63. Bhatia S, Kohl S (2013) Lasers in root canal sterilisation—a review. IJSS 01(03):107–111

    Google Scholar 

  64. de Souza EB, Cai S, Lorenzetti Simionato MR, Lage-Marques JL (2008) High-power diode laser in the disinfection in depth of the root canal dentin. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 106:e68–e72. https://doi.org/10.1016/j.tripleo.2008.02.032

    Article  PubMed  Google Scholar 

  65. Shehab NF, Alshamaa ZA, Taha MYM (2013) Evaluation of antibacterial efficacy of Elexxion diode laser 810nm on the infected root canals (in vitro and vivo study). International Journal of Dental Science and Research 1(2):23–27. https://doi.org/10.12691/ijdsr-1-2-1

    Google Scholar 

  66. Pirnat S, Lukac M, Ihan A (2011) Study of the direct bactericidal effect of Nd:YAG and diode laser parameters used in endodontics on pigmented and nonpigmented bacteria. Lasers Med Sci 26:755–761. https://doi.org/10.1007/s10103-010-0808-7

    Article  PubMed  Google Scholar 

  67. Asnaashari M., Safavi N. Disinfection of contaminated canals by different laser wavelengths, while performing root canal therapy. Review article. Journal of Lasers in Medical Sciences Vol 4 Nr 1: 2013:8–16

  68. Kanumuru NR, Subbaiah R (2014) Bacterial efficacy of Ca(oH)2 against E. faecalis compared with three dental lasers on root canal dentin—an in vitro study. J Clin Diagn Res 8(11):ZC135–ZC137

    PubMed  PubMed Central  Google Scholar 

  69. Castelo-Baz P., Martín-Biedma B., Ruíz-Piñón M., Rivas-Mundiña B., Bahillo J., Seoane-Prado R., Perez-Estévez A., Gude F., De Moor R., Varela-Patiño P. Combined sodium hypochlorite and 940 nm diode laser treatment against mature E. faecalis biofilms in-vitro. Journal of Lasers in Medical Sciences, Vol 3, Nr 3, 2012: 116–121

  70. Sohrabi K, Sooratgar A, Zolfagharnasab K, Kharazifard MJ, Afkhami F (2016) Antibacterial activity of diode laser and sodium hypochlorite in enterococcus Faecalis-contaminated root canals. Iran Endod J 11(1):8–12. https://doi.org/10.7508/iej.2016.01.002

    PubMed  Google Scholar 

  71. Bago I, Plečko V, Gabrić Pandurić D, Schauperl Z, Baraba A, Anić I (2012) Antimicrobial efficacy of a high-power diode laser, photo-activated disinfection, conventional and sonic activated irrigation during root canal treatment. Int Endod J:1–9. https://doi.org/10.1111/j.1365-2591.2012.02

  72. Kaiwar A, Usha HL, Meena N, Ashwini P, Murthy CS (2013) The efficiency of root canal disinfection using a diode laser: In vitro study. Indian J Dent Res 24:1418

    Article  Google Scholar 

  73. Jyotsna SV, Raju RVC, Patil JP, Singh TV, Bhutani N, Kamishetty S, Ghatole K (2016) Effect of diode laser on bacteria beyond the apex in relation to the size of the apical preparation–an in-vitro study. J Clin Diagn Res 10(5):ZC63–65. https://doi.org/10.7860/JCDR/2016/17759.7791

    PubMed  PubMed Central  Google Scholar 

  74. Sadık B, Arıkan S, Beldüz N, Yasxa Y, Karasoy D, Cehreli M (2013) Effects of laser treatment on endodontic pathogen Enterococcus faecalis: a systematic review. Photomed Laser Surg 31(5):192–200. https://doi.org/10.1089/pho.2013.3479

    Article  PubMed  Google Scholar 

  75. Archilla JR, Moreira MS, Miyagi SP, Bombana AC, Gutknecht N, Marques MM (2012) Single session of Nd: YAG laser intracanal irradiation neutralizes endotoxin in dental root dentin. J Biomed Opt 17(11):118002. https://doi.org/10.1117/1.JBO.17.11.118002

    Article  PubMed  Google Scholar 

  76. Mashalkar S, Pawar MG, Kolhe S, Jain DT (2014 Jan-Feb) Comparative evaluation of root canal disinfection by conventional method and laser: an in vivo study. Niger J Clin Pract 17(1):67–74. https://doi.org/10.4103/1119-3077.122846

    Article  PubMed  Google Scholar 

  77. Gutknecht N, Franzen R, Meister J, Vanweersch L, Mir M (2005) Temperature evolution on human teeth root surface after diode laser assisted endodontic treatment. Lasers Med Sci 20(2):99–103. https://doi.org/10.1007/s10103-005-0347-9

    Article  PubMed  Google Scholar 

  78. Hmud R, Kahler WA, Walsh LJ (2010) Temperature changes accompanying near infrared diode laser endodontic treatment of wet canals. J Endod 36(5):911. https://doi.org/10.1016/j.joen.2010.01.007

    Article  Google Scholar 

  79. Ramskold LO, Fong CD, Stromberg T (1997) Thermal Effects and Antibacterial properties of energy levels required to sterilize stained root canals with an Nd:YAG laser. J Endod 23(2):96–100. https://doi.org/10.1016/S0099-2399(97)80253-1

    Article  PubMed  Google Scholar 

  80. Haidary D, Franzen R, Gutknecht N (2016) Root surface temperature changes during root canal laser irradiation with dual wavelength laser (940 and 2780 nm): a preliminary study. Photomed Laser Surg 34(8):336–344. https://doi.org/10.1089/pho.2015.4007

    Article  PubMed  Google Scholar 

  81. Al-Karadaghi TS, Franzen R, Jawed AH, Gutknecht N (2015) Investigations of radicular dentin permeability and ultrastructural changes after irradiation with Er,Cr:YSGG laser and dual wavelength (2780 and 940 nm) laser. Lasers Med Sci 30(8):2115–2121. https://doi.org/10.1007/s10103-015-1757-y

    Article  PubMed  Google Scholar 

  82. Al-Karadaghi TS, Gutknecht N, Jawad HA, Vanweersch L, Franzen R (2015) Evaluation of temperature elevation during root canal treatment with dual wavelength laser: 2780 nm Er,Cr:YSGG and 940 nm diode. Photomed Laser Surg 33(9):460–466. https://doi.org/10.1089/pho.2015.3907

    Article  PubMed  Google Scholar 

  83. de Castro FPL, Pinheiro SL, Duarte MAH, Duque JA, Fernandes SL, Anchieta RB, Silveira Bueno CE (2016) Effect of time and ultrasonic activation on ethylenediaminetetraacetic acid on smear layer removal of the root canal. Microsc Res Tech 79:1062–1068. https://doi.org/10.1002/jemt.22746

    Article  PubMed  Google Scholar 

  84. Attur K, Joy MT, Karim R, Kumar VJA, Deepika C, Ahmed H (2016) Comparative analysis of endodontic smear layer removal efficacy of 17% ethylenediaminetetraacetic acid, 7% maleic acid, and 2% chlorhexidine using scanning electron microscope: an in vitro study. J Int Soc Prev Community Dent 6(Suppl 2):S160–S165. https://doi.org/10.4103/22310762.189755

    Article  PubMed  PubMed Central  Google Scholar 

  85. Garberoglio R, Becca C (1994) Smear layer removal by root canal irrigants. Oral Surg Oral Med Oral Pathol 78(3):359–367

    Article  PubMed  Google Scholar 

  86. Yamazaki R, Goya C, Yu DG, Kimura Y, Matsumoto K (2001) Effects of erbium, chromium: YSGG laser irradiation on root canal walls: a scanning Electron microscopic and thermographic study. J Endod 27(1):9–12

    Article  PubMed  Google Scholar 

  87. Peeters HH, Suardita K (2011) Efficacy of smear layer removal at the root tip by using ethylenediaminetetraacetic acid and erbium, chromium: yttrium, scandium, gallium garnet laser. J Endod 37(11):1585–1589

    Article  PubMed  Google Scholar 

  88. Nasher R, Franzen R, Gutknecht N (2016) The effectiveness of the Erbium:Yttrium aluminum garnet PIPS technique in comparison to different chemical solutions in removing the endodontic smear layer—an in vitro profilometric study. Lasers Med Sci 31:1871–1882. https://doi.org/10.1007/s10103-016-2063-z

    Article  PubMed  Google Scholar 

  89. da Costa Lima GA, Aguiar CM, Câmara AC, Alves LC, Dos Santos FA, do Nascimento AE (2015 Mar) Comparison of smear layer removal using the Nd:YAG laser, ultrasound, ProTaper Universal system, and CanalBrush methods: an in vitro study. J Endod 41(3):400–404. https://doi.org/10.1016/j.joen.2014.11.004

    Article  PubMed  Google Scholar 

  90. Ørstavik D, Kerekes K, Eriksen HM (1986) The periapical index: a scoring system for radiographic assessment of apical periodontitis. Endod Dent Traumatol 2:20–34

    Article  PubMed  Google Scholar 

  91. Martins MR, Carvalho MF, Pina-Vaz I, Capelas JA, Martins MA, Gutknecht N (2014) Outcome of Er,Cr:YSGG laser-assisted treatment of teeth with apical periodontitis: a blind randomized clinical trial. Photomed Laser Surg 32(1):3–9

    Article  PubMed  Google Scholar 

  92. Li Y, Wang X, Xu J, Zhou X, Xie K (Apr.2012) The clinical study on the use of diode laser irradiation in the treatment of periodontal-endodontic combined lesions. West China Journal of Stomatology 30(2):161–168

    PubMed  Google Scholar 

  93. Murphy WK, Kaugars GE, Collett WK, Dodds RN (1991) Healing of periapical radiolucencies after nonsurgical endodontic therapy. Oral Surg Oral Med Oral Pathol 71(5):620–624

  94. López-Jiménez L, Arnabat-Domínguez J, Viñas M, Vinuesa T (2015) Atomic force microscopy visualization of injuries in Enterococcus faecalis surface caused by Er,Cr:YSGG and diode lasers. Med Oral Patol Oral Cir Bucal 20(1):e45–e51

    Article  PubMed  Google Scholar 

  95. Thomas S, Asokan S, John B, Priya G, Kumar S (2017) Comparison of antimicrobial efficacy of diode laser, triphala, and sodium hypochlorite in primary root canals: a randomized controlled trial. Int J Clin Pediatr Dent 10(1):14–17

    Article  PubMed  PubMed Central  Google Scholar 

  96. Ørstavik D, Qvist V, Stoltze K (2004) A multivariate analysis of the outcome of endodontic treatment. Eur J Oral Sci 112:224–230

    Article  PubMed  Google Scholar 

  97. Friedman S, Abitbol S, Lawrence HP (2003) Treatment outcome in endodontics: the Toronto study. Phase 1: initial treatment. J Endod 29(12):787–793

    Article  PubMed  Google Scholar 

  98. Friedman S (2002) Prognosis of initial endodontic therapy. Endod Top 2:59–88

    Article  Google Scholar 

  99. Haapasalo M, Ranta H, Ranta K, Shah H (1986) Black-pigmented Bacteroides spp. in human apical periodontitis. Infect Immun 53(1):149–153

    PubMed  PubMed Central  Google Scholar 

  100. Sundqvist G, Johansson E, Sjögren U (1989) Prevalence of black-pigmented bacteroides species in root canal infections. J Endod. 15(1):13–19. https://doi.org/10.1016/S0099-2399(89)80092-5

    Article  PubMed  Google Scholar 

  101. Haapasalo M (1993) Black-pigmented Gram-negative anaerobes in endodontic infections. FEMS Immunol Med Microbiol 6:213–218

    Article  PubMed  Google Scholar 

  102. van Winkelhoff AJ, Carlee AW, de Graaff J (1985) Bacteroides endodontalis and other black-pigmented Bacteroides species in edontogenic abscesses. Infect Immun 49:494–497

    PubMed  PubMed Central  Google Scholar 

  103. Karu T (1999) Primary and secondary mechanisms of action of visible to near-IR radiation on cells. J Photochem Photobiol B Biol 49(1):1–17

    Article  Google Scholar 

Download references

Acknowledgements

Special thanks to the RWTH Aachen Dental Laser Centre AALZ for inspiration, encouragement and motivation, to a colleague and friend specialist endodontist Simona Biriukoviene who kindly evaluated radiographs with PAI scores, to Irena Nedzelskiene who did statistical analysis for this study and the last but not least for a specialist prosthodontist owner of the private practice where this study was done—Jonas Masilionis—father of the author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Masilionyte.

Ethics declarations

For this type of study, formal consent is not required.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masilionyte, M., Gutknecht, N. Outcome of 940-nm diode laser-assisted endodontic treatment of teeth with apical periodontitis: a retrospective study of clinical cases. Laser Dent Sci 2, 169–179 (2018). https://doi.org/10.1007/s41547-018-0035-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41547-018-0035-2

Keywords

Navigation