Skip to main content
Log in

Contrasting high-Mg, high-K rocks in Central Iberia: the appinite—vaugnerite conundrum and their (non-existent) relation with arc magmatism

  • Research Paper
  • Published:
Journal of Iberian Geology Aims and scope Submit manuscript

Abstract

The central zone of the Iberian Massif contains abundant granitic batholiths, mostly consisting of peraluminous granodiorites to granites, with minor volumes of high-Mg and high-K ultramafic, mafic, and intermediate rocks (UMI rocks), belonging to two associations: vaugnerites and appinites. The UMI rocks crop out as small stocks within anatectic domains or granite bodies, as enclaves (scattered, clusters or swarms), even as syn-plutonic dikes. SHRIMP zircon U–Pb ages range from ~ 291 Ma to ~ 328 Ma, being broadly coeval with the granites and slightly younger than the anatexites that host them. The vaugnerites are alkaline, with Na2O + K2O concentrations similar to shoshonites, whereas the appinites are comparable to high-K calc-alkaline series, but in no way can they be considered arc-rocks indicative of subduction. Compared with arc-related shoshonites and high-K calc-alkaline rocks, the Iberian UMI rocks, especially the vaugnerites, are much more enriched in mica-compatible elements such as Li, Rb, Cs, Be, Sn, Nb, etc. as well as in Th and U. They also have extraordinarily elevated production of radiogenic heat, the appinites about 1.5 µWm−3, and the vaugnerites about 3.9 µWm−3. These values contrast with the average heat production of the upper mantle (0.02 µWm−3) and the lower continental crust (0.6 µWm−3) and are even higher than the average continental crust (1.4 µWm−3) indicating extensive crustal contamination. The negative whole-rock εNdt, usually between  − 2 and  – 6, the elevated initial 87Sr/86Sr, usually > 0.706, and the old Nd model ages (1 Ga to 1.5 Ga), i.e., much higher than the zircon crystallization ages, reinforces this idea. Despite both rock associations being affected by crustal contamination, the processes that operated were different. Whereas appinites may have resulted from bulk contamination with anatexites plus crystal fractionation, the vaugnerites require contamination with supercritical fluids resulting from biotite breakdown. Accordingly, we propose that the production of appinites or vaugnerites depends on the fertility of the metamorphic rocks they traversed en route from the mantle to the middle crust: if the host rock was fertile and partially molten, the intrusion of mafic magma increased the melt fraction so permitting bulk contamination to produce hybrid appinite magmas; if the rock was infertile, the fluids released from micas breakdown during the metamorphism could migrate as such to the mafic magmas, contaminating them to yield vaugnerite magmas.

Resumen

La zona central del Macizo Ibérico contiene abundantes batolitos graníticos, formados mayoritariamente por granodioritas a granitos peraluminosos con escasos volúmenes de rocas ultramáficas, máficas e intermedias con altos contenidos en Mg y K (UMI) que pertenecen a dos asociaciones: vaugneritas y appinitas. Las rocas UMI afloran como pequeños stocks en dominios anatécticos y cuerpos graníticos, como enclaves (dispersos, en grupos o enjambres) y como diques sin-plutónicos. Las edades U-Pb SHRIMP en circón oscilan entre 328 Ma y 291 Ma, coetáneas con las de los granitos y ligeramente más jóvenes que las anatexitas encajantes. Las vaugneritas son alcalinas, con Na2O+K2O similar a las shoshonitas, mientras que las appinitas son comparables a las series calcoalcalinas ricas en K, pero en ningún caso pueden considerarse rocas de arco relacionadas con subducción. Comparadas con shoshonitas y rocas calcoalcalinas ricas en K, las rocas UMI y en especial las vaugneritas, están mucho más enriquecidas en elementos compatibles en micas como Li, Rb, Cs, Be, Sn, Nb, etc., así como en Th y U. Además tienen una elevada producción de calor radiogénico, las appinitas ≈ 1.5 µWm-3 y las vaugneritas ≈ 3.9 µWm-3, que contrasta con el valor promedio del manto superior (0.02 µWm-3) y de la corteza inferior (0.6 µWm-3), y es incluso mayor que el promedio de la corteza continental (1.4 µWm-3) indicando una importante contaminación cortical. La anomalía negativa de εNdt en roca total, normalmente entre  – 2 y  – 6, la elevada relación inicial de 87Sr/86Sr, normalmente > 0.706, y las edades modelo de Nd (1 Ga a 1.5 Ga) muy superiores a las edades de cristalización de circón, refuerzan esta idea. Ambas asociaciones están afectadas por contaminación cortical pero los procesos de contaminación fueron diferentes. En las appinitas se produjo una contaminación generalizada con anatexitas y cristalización asociada. Las vaugneritas se contaminaron con fluidos supercríticos resultantes del metamorfismo y desestabilización de biotita. En consecuencia, proponemos que la producción de appinitas o vaugneritas depende de la fertilidad de las rocas metamórficas que atravesaron en su ruta desde el manto hasta la corteza: si la roca encajante era fértil y parcialmente fundida, la intrusión de magma máfico aumentaría la fracción de fundido permitiendo la contaminación generalizada para producir magmas híbridos tipo appinita; si la roca no era fértil, los fluidos liberados por la descomposición de las micas durante el metamorfismo podrían migrar al magma máfico y contaminarlo para producir magmas tipo vaugnerita.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

source or incorporated during emplacement, other minerals controlled the REE abundances in arc-related rocks. Th and U are also excellent discriminants between appinites and vaugnerites, and between these and shoshonites. As seen before with Zr and Nb, Th and U show a positive correlation with SiO2 in island-arc rocks, but not in the Iberian rocks. The reference lines occupy the same position in each element plot

Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Aramaki, S., Onuma, N., & Portillo, F. (1984). Petrography and major element chemistry of the volcanic-rocks of the andes, Southern Peru. Geochemical Journal, 18, 217–232.

    Google Scholar 

  • Arculus, R. J. (2003). Use and abuse of the terms calcalkaline and calcalkalic. Journal of Petrology, 44, 929–935.

    Google Scholar 

  • Bailey, E. B., & Maufe, H. B. (1916). Geology of Ben Nevis and Glen Coe. Scotland: Mem. Geol. Surv.

    Google Scholar 

  • Bateman, P. (1961). Granitic formations in the east-central sierra nevada near bishop California. Geol. Soc. Am. Bulletin, 72, 1521–1538.

    Google Scholar 

  • Bateman, P., & Chappell, B. W. (1979). Crystallization, fractionation, and solidification of the Tuolumne Intrusive series, Yosemite National Park California. Geol. Soc. Am. Bulletin, 90, 465–482.

    Google Scholar 

  • Bateman, P. C., & Nockleberg, W. J. (1978). The solidification of Mount Givens Granodiorite, central Sierra Nevada, California. Journal of Geology, 86, 563–579.

    Google Scholar 

  • Bea, F. (1996a). Residence of REE, Y, Th and U in granites and crustal protoliths; Implications for the chemistry of crustal melts. Journal of Petrology, 37, 521–552.

    Google Scholar 

  • Bea, F. (1996b). Controls on the Trace Element Composition of Crustal Melts. Transaction of the Royal Society of Edinburg: Earth Sciences, 87, 33–42.

    Google Scholar 

  • Bea, F. (1999). Heat-producing elements. In C. P. Marshall & R. W. Fairbridge (Eds.), Encyclopedia of Geochemistry (pp. 208–209). Dordrech: Kluwer Ac. Pub.

    Google Scholar 

  • Bea, F. (2012). The sources of energy for crustal melting and the geochemistry of heat-producing elements. Lithos, 153, 278–291.

    Google Scholar 

  • Bea, F., Montero, P., González-Lodeiro, F., Talavera, C., Molina, J. F., Scarrow, J. H., et al. (2006). Zircon thermometry and U-Pb ion-microprobe dating of the gabbros and associated migmatites of the Variscan Toledo Anatectic Complex, Central Iberia. Journal of the Geological Society, London, 163, 847–855.

    Google Scholar 

  • Bea, F., Montero, P., & Molina, J. F. (1999). Mafic precursors, peraluminous granitoids, and late lamprophyres in the Avila batholith: A model for the generation of Variscan batholiths in Iberia. Journal of Geology, 107, 399–419.

    Google Scholar 

  • Bea, F., Montero, P., & Zinger, T. (2003). The Nature and Origin of the Granite Source Layer of Central Iberia: Evidence from Trace Element, Sr and Nd Isotopes, and Zircon Age Patterns. Journal of Geology, 111, 579–595.

    Google Scholar 

  • Bea, F., Villaseca, C., & Bellido, F. (2004). El Batolito de Avila (Sistema Central Español). In J. A. Vera (Ed.), Geología de España (pp. 101–110). Madrid: SGE-ITGE.

    Google Scholar 

  • Black, L. P., Kamo, S. L., Allen, C. M., Davis, D. W., Aleinikoff, J. N., Valley, J. W., et al. (2004). Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards. Chemical Geology, 205, 115–140.

    Google Scholar 

  • Campbell, I. H., Stepanov, A. S., Liang, H.-Y., Allen, C. M., Norman, M. D., Zhang, Y.-Q., & Xie, Y.-W. (2014). The origin of shoshonites: new insights from the Tertiary high-potassium intrusions of eastern Tibet. Contributions to Mineralogy and Petrology, 167, 983. https://doi.org/10.1007/s00410-014-0983-9.

    Article  Google Scholar 

  • Capdevila, R., Corretge, G., & Floor, P. (1973). Les granitoïdes varisques de la meseta ibérique. Bulletin de la Societe Geologique de France, 15, 209–228.

    Google Scholar 

  • Carr, P. F. (1998). Subduction-related late Permian shoshonites of the Sydney basin, Australia. Mineralogy and Petrology, 63, 49–71.

    Google Scholar 

  • Castro, A., Corretgé, L. G., De La Rosa, J. D., Fernández, C., López, S., García-Moreno, O., & Chacón, H. (2003). Tha Appinite-Migmatite Complex of Sanabria, NW Iberian Massif Spain. Journal of Petrology, 44(7), 1309–1344.

    Google Scholar 

  • Chapman, D. S., & Furlong, K. P. (1992). Thermal state of the continental lower crust. In D. M. Fountain, R. Arculus, & R. W. Kay (Eds.), Continental Lower Crust (pp. 179–199). Amsterdam: Elsevier.

    Google Scholar 

  • Cumming, G. L., & Richards, J. R. (1975). Ore lead isotope ratios in a continuously changing Earth. Earth and Planetary Science Letters, 28, 155–171.

    Google Scholar 

  • de Petrología, D., & de Salamanca, U. (1980). Plutonism of Central Western Spain A preliminary note. Estudios Geológicos, 36, 339–348.

    Google Scholar 

  • Feeley, T. C. (2003). Origin and Tectonic Implications of Accross-Strike Geochemical Variations in the Eocene Absaroka Volcanic Province, United States. Journal of Geology, 111, 329–346.

    Google Scholar 

  • Fournet, J. (1861). Géologie Lyonnaise. Lyon, impr. de Barret, 744 p.

  • Franco González, M. P., & García de Figuerola, L. C. (1986). Las rocas básicas y ultrabásicas en el extremo occidental de la Sierra de Avila (Provincias de Avila y Salamanca) (pp. 193–219). XXIII: Stud. Geol. Salmanticensis.

    Google Scholar 

  • French, W. J. (1966). Appinitic Intrusions Clustered around Ardara Pluton County Donegal. Proceedings of the Royal Irish Academy Section B-Biological Geological and Chemical Science, 64, 303–322.

    Google Scholar 

  • Frost, B. R., Barnes, C. G., Collins, W. J., Arculus, R. J., Ellis, D. J., & Frost, C. D. (2001). A geochemical classification for granitic rocks. Journal of Petrology, 42(11), 2033–2048.

    Google Scholar 

  • Galán, G., Pin, C., & Duthou, J. (1996). Sr-Nd isotopic record of multi-stage interactions between mantle-derived magmas and crustal components in a collision context – the ultramafic-granitoid association from Vivero (Hercynian belt, NW Spain). Chemical Geology, 131, 67–91.

    Google Scholar 

  • Gallastegui, G. (2005). Petrología del macizo granodiorítico de Bayo-Vigo (Provincia de Pontevedra, España). Serie NOVA TERRA nº 26, Ediciós O Castro, 414 p.

  • Gil Ibarguchi, I. (1980). Las vaugneritas de la región de Finisterre (Galicia, NW de España). Probables productos de magmas anatécticos residuales. Cuad. Lab. Xeol. Laxe, 1, 21–30.

    Google Scholar 

  • Gilbert, M. C., Helz, R. T., Popp, R. K., & Spear, F. S. (1982). Experimental studies of amphibole stability: Mineralogical Society of America. Reviews in Mineralogy and Geochemistry, 9B, 231–268.

    Google Scholar 

  • Goldstein, S. L., & O’ Nions, R. K., & Hamilton, P. J. . (1984). A Sm-Nd isotopic study of atmospheric dust and particulates from major river systems. Earth and Planetary Science Letters, 70, 221–236.

    Google Scholar 

  • Greene, A. R., DeBari, S. M., Kelemen, P. B., Blusztajn, J., & Clift, P. D. (2006). A Detailed Geochemical Study of Island Arc Crust: the Talkeetna Arc Section, South-Central Alaska. Journal of Petrology, 47, 1051–1093.

    Google Scholar 

  • Housh, T. B., & Luhr, J. F. (1991). Plagioclase-melt equilibria in hydrous systems. American Mineralogist, 76, 477–492.

    Google Scholar 

  • Ickert, R., Hiess, J., Williams, I., Holden, P., Ireland, T., Lanc, P., et al. (2008). Determining high precision, in situ, oxygen isotope ratios with a SHRIMP II: Analyses of MPI-DING silicate-glass reference materials and zircon from contrasting granites. Chemical Geology, 257, 114–128.

    Google Scholar 

  • Iddings, J. P. (1895). Absarokite - shoshonite - banakite series. Journal of Geology, 3, 935–959.

    Google Scholar 

  • Iddings, J. P. (1909). Igneous rocks. John Wiley & Sons, 464 p.

  • Jiang, Y.-H., Jiang, S.-Y., Ling, H.-F., Zhou, X.-R., Xing-Jian, R., & Wan-Zhi, Y. (2002). Petrology and geochemistry of shoshonitic plutons from the western Kunlun orogenic belt, Xinjiang, northwestern China: implications for granitoid geneses. Lithos, 63, 165–187.

    Google Scholar 

  • Johannsen, A. (1939). A descriptive petrography of igneous rocks (4 vol.) 2 ed. The University of Chicago Press.

  • Joplin, G. A. (1968). The shoshonite association-a review. Journal of the Geological Society of Australia, 15, 275–294.

    Google Scholar 

  • Le Maitre, R. W. (1989). A Classification of Igneous Rocks and Glossary of Terms. Recommendations of the International Union of Geological Sciences Sub-commission on the Systematics of Igneous Rocks. Blackwell. Oxford. 193 p.

  • Leslie, R. A. J., Danyushevsky, L. V., Crawford, A. J., & Verbeeten, A. C. (2009). Primitive shoshonites from Fiji: Geochemistry and source components. Geochemistry, Geophysics, Geosystems, 10, Q07001. https://doi.org/10.1029/2008GC002326.

    Article  Google Scholar 

  • Lindsay, C. R., & Feeley, T. C. (2003). Magmagenesis at the Eocene Electric Peak–Sepulcher Mountain complex, Absaroka Volcanic Province, USA. Lithos, 67, 53–76.

    Google Scholar 

  • Longo D’illes, A. A., Grunder, J. H., & Duncan, R. (2010). Evolution of Calc-Alkaline Volcanism and Associated Hydrothermal Gold Deposits at Yanacocha, Peru. Economic Geology, 105, 1191–1241.

    Google Scholar 

  • López-Moro, F. J., & López-Plaza, M. (2004). Monzonitic series from the Variscan Tormes Dome (Central Iberian Zone): petrogenetic evolution from monzogabbro to granite magmas. Lithos, 72, 19–44.

    Google Scholar 

  • López-Moro, F. J., Romer, R. L., López-Plaza, M., & Gónzalez Sánchez, M. (2017). Zircon and allanite U-Pb ID-TIMS ages of vaugnerites from the Calzadilla Pluton, Salamanca (Spain): Dating mantle-derived magmatism and postmagmatic subsolidus overprint. Geologica Acta, 15(4), 395–408.

    Google Scholar 

  • Michel-Lévy, A., & Lacroix, A. (1887). Sur le granite a amphibole de Vaugneray (Vaugnerite de Fournet). Bull Soc Min France, X, 27–30.

    Google Scholar 

  • Mitchell, R. H. (1994). The lamprophyre facies. Mineralogy and Petrology, 51, 137–146.

    Google Scholar 

  • Molina, J. F., Scarrow, J. H., Montero, P., & Bea, F. (2009). High-Ti amphibole as a petrogenetic indicator of magma chemistry: evidence for mildly alkalic-hybrid melts during evolution of Variscan basic–ultrabasic magmatism of Central Iberia. Contributions to Mineralogy and Petrology, 158, 69–98.

    Google Scholar 

  • Montero, P., Bea, F., & Zinger, T. F. (2004a). Edad 207Pb/206Pb en cristal único de circón de las rocas máficas y ultramáficas del sector de Gredos, Batolito de Avila (Iberia Central). Revista de la Sociedad Geológica de España, 17, 157–165.

    Google Scholar 

  • Montero, P., Bea, F., Zinger, T. F., Scarrow, J. H., Molina, J. F., & Whitehouse, M. J. (2004b). 55 Million Years of Continuous Anatexis in Central Iberia: Single Zircon Dating of the Peña Negra Complex. Journal of the Geological Society, 161, 255–264.

    Google Scholar 

  • Morrison, G. W. (1980). Characteristics and tectonic setting of the shoshonite rock association. Lithos, 13, 97–108.

    Google Scholar 

  • Pamić, J., Pecskay, Z., & Balen, D. (2000). Lower Oligocene K-Ar ages of high-K calc-alkaline and shoshonite rocks from the North Dinarides in Bosnia. Mineralogy and Petrology, 70, 313–320.

    Google Scholar 

  • Panjasawatwong, Y., Danyushevsky, L. V., Crawford, A. J., & Harris, K. L. (1995). An experimental study of the effects of melt composition on plagioclase-melt equilibria at 5 and 10 kbar: implications for the origin of magmatic high-An plagioclase. Contributions to Mineralogy and Petrology, 118, 420–432.

    Google Scholar 

  • Pietranik, A., Holtz, F., Koepke, J., & Puziewicz, J. (2009). Crystallization of quartz dioritic magmas at 2 and 1 kbar: experimental results. Mineralogy and Petrology, 97, 1–21.

    Google Scholar 

  • Pitcher, W. S. (1997). The Nature and Origin of Granite (p. 387). London: Chapman & Hall.

    Google Scholar 

  • Pitcher, W. S., Atherton, M. P., Cobbing, E. J., & Beckingsale, R. D. (1985). Magmatism at a Plate Edge: the Peruvian Andes (p. 328). Halstead P., Glasgow: Blackie.

    Google Scholar 

  • Rogers, N. W., & Setterfield, T. N. (1994). Potassium and incompatible-element enrichment in shoshonitic lavas from the Tavua volcano, Fiji. Chemical Geology, 118, 43–62.

    Google Scholar 

  • Ross, D. C. (1989). The Metamorphic and Plutonic Rocks of the southernmost Sierra Nevada, California, and their Thectonic Framework (p. 1381). Geol. Sur. Prof. Pap.: US.

    Google Scholar 

  • Rudnick, R. L., & Gao, S. (2003). Composition of the continental crust. In R. L. Rudnick (Ed.), Treatise in Geochemistry, 3, 1–64.

  • Sabatier, H. (1980). Vaugnérites et granites. Une association particulière de roches grenues acides et basiques. Bulletin de Minéralogie, 103, 507–522.

    Google Scholar 

  • Sauer, A. (1893). Der Granitit Von Durbach In Nördlichen Schawardwalde und seine Grenzfacies von Glimmersyenit (Durbachit). Mitt. Bad. Geol. Landensalstat, 2, 231–275.

    Google Scholar 

  • Scarrow, J. H., Molina, J. F., Bea, F., & Montero, P. (2009). Within-plate calc-alkaline rocks: Insights from alkaline mafic magma–peraluminous crustal melt hybrid appinites of the Central Iberian Variscan continental collision. Lithos, 110, 50–64.

    Google Scholar 

  • Sun, C. H., & Stern, R. J. (2001). Genesis of Mariana shoshonites: Contribution of the subduction component. Journal of Geophysical Research, 106, 589–608.

    Google Scholar 

  • Sun, G.-Z., Xu, W.-L., Wang, Z.-W., Guo, P., & Liu, S.-W. (2018). Petrogenesis of Cenozoic shoshonitic rocks in Fiji: Constraints from mineral and whole-rock geochemistry. Geological Journal, 53, 2759–2778.

    Google Scholar 

  • Williams, I. S., & Claesson, S. (1987). Isotopic evidence for the Precambrian provenance and Caledonian metamorphism of high grade paragneisses from the Seve Nappes, Scandinavian Caledonides. Contributions to Mineralogy and Petrology, 95, 205–217.

    Google Scholar 

  • Wones, D. R., & Gilbert, M. C. (1982). Amphiboles in the igneous environment. In D. R. Veblen, & P. H. Ribbe (Eds.), Amphiboles: petrology and experimental phase relations. Mineralogical Society of America, Reviews in Mineralogy, 9B, 355–390.

Download references

Acknowledgements

This is the IBERSIMS manuscript nº 76 financially supported by the Spanish Grant CGL2017-84469-P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Bea.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bea, F., Gallastegui, G., Montero, P. et al. Contrasting high-Mg, high-K rocks in Central Iberia: the appinite—vaugnerite conundrum and their (non-existent) relation with arc magmatism. J Iber Geol 47, 235–261 (2021). https://doi.org/10.1007/s41513-020-00152-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41513-020-00152-x

Keywords

Palabras clave

Navigation