Skip to main content

Advertisement

Log in

Constraints of applying strontium isotope stratigraphy in coastal and shallow marine environments: insights from Lower Cretaceous carbonates deposited in an active tectonic setting (N Iberian Basin, Spain)

  • Research Paper
  • Published:
Journal of Iberian Geology Aims and scope Submit manuscript

Abstract

The Lower Cretaceous Leza Formation is an essentially carbonate unit deposited at the northernmost active margin of the Cameros Basin (N Spain) under an extensional tectonic regime. This unit is composed of freshwater, marine-influenced, marginal-marine and hypersaline marine carbonate facies, interbedded with variable amounts of alluvial deposits, mainly derived from the erosion of the Jurassic substrate. 87Sr/86Sr, δ18O and δ13C analyses were obtained from carbonate facies of the Eastern and Western sectors of the basin. δ18O values follow the expected trend in both sectors: they are more negative (down to − 7.9‰) in freshwater carbonates and more positive (up to + 2.8‰) in marginal-marine to hypersaline facies. However, independently of the seawater or freshwater influence, in the Western Sector the 87Sr/86Sr values (0.707373–0.707801) are significantly lower and closer to the published Lower Cretaceous seawater 87Sr/86Sr ratios, than those of the Eastern Sector (0.707988–0.709033), where the overall marine influence was relatively high and the alluvial input low. These data strongly suggest that 87Sr/86Sr ratios were mainly controlled by those of the riverine freshwater arriving to the coastal and marine areas after the weathering and erosion of the Jurassic carbonates or siliciclastic rocks, in the Western and Eastern sectors, respectively. Thus, data indicate that, in coastal and shallow marine carbonates, the influence of the riverine water on the 87Sr/86Sr ratios should be systematically evaluated. This is particularly necessary in active tectonic settings, where the uplifted areas are significantly prone to weathering and erosion and where alluvial fan systems commonly developed, eventually discharging into coastal and shallow marine areas.

Resumen

La Formación Leza es una unidad esencialmente carbonática del Cretácico Inferior depositada en el borde norte de la cuenca de Cameros (N de España) en un contexto tectónico extensional. Está formada por facies carbonáticas de agua dulce, con influencia marina, marinas marginales e hipersalinas, intercaladas con cantidades variables de depósitos aluviales, procedentes de la erosión del sustrato Jurásico de la cuenca. Se han obtenido datos de 87Sr/86Sr, δ18O y δ13C de las facies carbonáticas en las zonas Oriental y Occidental de la cuenca. Los valores de δ18O siguen la tendencia esperable en ambas zonas: son más negativos (hasta-7.9‰) en los carbonatos de agua dulce y más positivos (hasta + 2.8‰) en las facies marinas marginales e hipersalinas. Sin embargo, independientemente de la influencia marina o de agua dulce, los valores de 87Sr/86Sr de la zona Occidental (0.707373–0.707801) son significativamente inferiores y más próximos a los valores publicados para los carbonatos marinos del Cretácico Inferior, que los de la zona Oriental (0.707988–0.709033), donde la influencia marina fue, en general, relativamente mayor y el aporte aluvial menor. Estos resultados indican que las relaciones de 87Sr/86Sr estuvieron controladas principalmente por las del agua dulce fluvial que llegaba a las zonas costeras y marinas tras la meteorización y erosión del sustrato Jurásico de la cuenca, carbonático en el Sector Occidental y siliciclástico en el Oriental, y sugieren que, para la interpretación de las relaciones de 87Sr/86Sr en carbonatos costeros y marinos someros, sobre todo de aquéllos depositados en contextos tectónicamente activos, se debería evaluar sistemáticamente la influencia del agua dulce.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allan, J. R., & Matthews, R. K. (1977). Carbon and oxygen isotopes as diagenetic and stratigraphic tools: data from surface and subsurface of Barbados, West Indies. Geology, 5, 16–20.

    Google Scholar 

  • Allan, J. R., & Matthews, R. K. (1982). Isotope signatures associated with early meteoric diagenesis. Sedimentology, 29, 797–817.

    Google Scholar 

  • Alonso, A. & Mas, J.R. (1988). El Jurásico Superior marino en el sector Demanda-Cameros (La Rioja-Soria). III Coloquio de Estratigrafía y Paleogeografía del Jurásico de España, Logroño, 1988. Programa y resúmenes de comunicaciones, p 5–8.

  • Alonso, A., & Mas, J. R. (1990). El Jurásico Superior marino en el sector Demanda-Cameros (La Rioja-Soria). Cuadernos de Geología Ibérica, 14, 173–198.

    Google Scholar 

  • Alonso, A., & Mas, J. R. (1993). Control tectónico e influencia del eustatismo en la sedimentación del Cretácico inferior de la Cuenca de Los Cameros. Cuadernos de Geología Ibérica, 17, 285–310.

    Google Scholar 

  • Anderson, P. S., Wasserbug, G. J., & Inorl, J. (1992). The sources and transport of Sr and Nd isotopes in the Baltic Sea. Earth and Planetary Science Letters, 113, 459–472.

    Google Scholar 

  • Arenas, C., Casanova, J., & Pardo, G. (1997). Stable-isotope characterization of the Miocene lacustrine systems of Los Monegros (Ebro Basin, Spain): palaeogeographic and palaeoclimatic implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 128, 133–155.

    Google Scholar 

  • Arribas, J., Alonso, A., Mas, R., Tortosa, A., Rodas, M., Barrenechea, J. F., et al. (2003). Sandstone petrography of continental depositional sequences of a intraplate rift basin: Western Cameros Basin (North Spain). Journal of Sedimentary Research, 73, 309–327.

    Google Scholar 

  • Azmy, K., Veizer, J., Wenzel, B., Bassett, M. G., & Copper, P. (1999). Silurian strontium isotope stratigraphy. Geological Society of America Bulletin, 111, 475–483.

    Google Scholar 

  • Banner, J. L. (1995). Application of the trace element and isotope geochemistry of strontium to studies of carbonate diagenesis. Sedimentology, 42, 805–824.

    Google Scholar 

  • Banner, J. L., Musgrove, M., & Capo, R. (1994). Tracing ground-water evolution in a limestone aquifer using Sr isotopes: effects of multiple sources of dissolved ions and mineral-solution reactions. Geology, 22, 687–690.

    Google Scholar 

  • Barbieri, M., Castorina, F., Colalongo, M. L., Pasini, G., & Valani, S. C. (1998). Worldwide correlation of the Pliocene/Pleistocene GSSP at Vrica (southern Italy) confirmed by strontium isotope stratigraphy. Newsletters on Stratigraphy, 36, 177–187.

    Google Scholar 

  • Benito, M. I., Lohmann, K. C., & Mas, R. (2001). Discrimination of multiple episodes of meteoric diagenesis in a Kimmeridgian reefal complex, North Iberian Range, Spain. Journal of Sedimentary Research, 71, 280–393.

    Google Scholar 

  • Benito, M. I., Lohmann, K. C., & Mas, R. (2005). Late Jurassic paleogeography and paleoclimate in the Northern Iberian Basin of Spain: constrains from diagenetic records in reefal and continental carbonates. Journal of Sedimentary Research, 75, 82–96.

    Google Scholar 

  • Benito, M. I., & Mas, R. (2002). Evolución diagenética de los carbonatos arrecifales de la Formación Torrecilla en Cameros y de los carbonatos continentales suprayacentes (Kimmeridgiense inferior-Titónico) en el sector de Soria. Cuenca de Cameros N. España. Cuadernos de Geología Ibérica, 28, 65–92.

    Google Scholar 

  • Benito, M. I., & Mas, R. (2006). Sedimentary evolution of the Torrecilla Reef Complex in response to tectonically forced regression (Early Kimmeridgian, Northern Spain). Sedimentary Geology, 183, 31–49.

    Google Scholar 

  • Benke, K. (1981). Die Dogger/Malm-Wende in den NW-Keltiberischen Ketten (Spanien) und angrenzenden Gebieten. Sedimentologie Stratigraphie und Paláogeographie. Facies, 4, 95–164.

    Google Scholar 

  • Benke, K., Dürkoop, A., Errenst, C., & Mensik, H. (1981). Die Korallenkalke im Ober-Jura der nordwestlichen Iberischen Ketten (Spanien). Facies, 4, 27–94.

    Google Scholar 

  • Bodin, S., Fiet, N., Godet, A., Matera, V., Westermann, S., Clément, A., et al. (2009). Early Cretaceous (late Berriasian to early Aptian) palaeoceanographic change along the northwestern Tethyan margin (Vocontian Trough, southeastern France): δ13C, δ18O and Sr-isotope belemnite and whole-rock records. Cretaceous Research, 30, 1247–1262.

    Google Scholar 

  • Boix, C., Frijia, G., Vicedo, V., Bernaus, J. M., Di Lucia, M., Parente, M., & Caus, E. (2011). Larger foraminífera distribution and strontium isotope stratigraphy of the La Cova limestones (Coniacian–Santonian, “Serra del Montsec”, Pyrenees, NE Spain). Cretaceous Research, 32, 806–822.

    Google Scholar 

  • Bonilla-Rodríguez, A. J., González, L. A., Douglas Walker, J., & Santos, H. (2014). Strontium isotope (87Sr/86Sr) stratigraphy from the Coalcomana-Caprinuloidea rudist assemblage in the Greater Antilles (Puerto Rico, Dominican Republic and Jamaica). Cretaceous Research, 50, 97–109.

    Google Scholar 

  • Bover-Arnal, T., Moreno-Bedmar, J. A., Frijia, G., Pascual-Cebrian, E., & Salas, R. (2016). Chronostratigraphy of the Barremian-Early Albiano f the Maestrat Basin (E Iberian Peninsula): integrating strontium isotope stratigraphy and ammonoid biostratigraphy. Newsletters on Stratigraphy, 49(1), 41–68.

    Google Scholar 

  • Bralower, T. J., Fullagar, P. D., Paull, C. K., Dwyer, G. S., & Leckie, R. M. (1997). Mid-Cretaceous strontium-isotope stratigraphy of deep-sea sections. Geological Society of America Bulletin, 109, 1421–1442.

    Google Scholar 

  • Brasier, M. D., Shields, G. A., Kuleshov, V. N., & Zhegallo, E. A. (1996). Integrated chemo- and biostratigraphic calibration of early animal evolution: Neoproterozoic-early Cambrian of southwest Mongolia. Geological Magazine, 133, 445–485.

    Google Scholar 

  • Brass, G. W. (1976). The variation of the marine 87Sr/86Sr ratio during Phanerozoic time: interpretation using a flux model. Geochimica et Cosmochimica Acta, 40, 721–730.

    Google Scholar 

  • Bryant, J. D., Jones, D. S., & Mueller, P. A. (1995). Influence of freshwater flux on 87Sr/86Sr chronostratigraphy in marginal marine environments and dating vertebrate and invertebrate faunas. Journal of Paleontology, 69, 1–6.

    Google Scholar 

  • Bulard, P.F. (1972). Le Jurassique Moyen et Supérieur de la Chaîne Ibérique sur la bordure du bassin de l’Ebre (Espagne). These Doct. Fac. Sc. Univ. Nice, 2 vol., pp 702

  • Burke, W. H., Dension, R. E., Hetherington, E. A., Koepnick, R. B., Nelson, H., & Otto, J. B. (1982). Variations of seawater 87Sr/88Sr throughout Phanerozoic time. Geology, 10, 516–519.

    Google Scholar 

  • Casas-Sainz, A. M., & Simón-Gómez, J. L. (1992). Stress field and thrust kinematics: a model for the tectonic inversion of the Cameros Massif (Spain). Journal of Structural Geology, 14, 521–530.

    Google Scholar 

  • Caus, E., Frijia, G., Parente, M., Robles-Salcedo, R., & Villalonga, R. (2016). Constraining the age of the last marine sediments in the late Cretaceous of central south Pyrenees (NE Spain): insights from larger benthic foraminifera and strontium isotope stratigraphy. Cretaceous Research, 57, 402–413.

    Google Scholar 

  • DePaolo, D. J., & Ingram, B. L. (1985). High-resolution stratigraphy with strontium isotopes. Science, 227, 938–941.

    Google Scholar 

  • Dickson, J. A. D. (1966). Carbonate identification and genesis as revealed by staining. Journal of Sedimentary Petrology, 36(2), 491–505.

    Google Scholar 

  • Dunham, R. J. (1962). Classification of carbonate rocks according to depositional texture. In W. E. Ham (Ed.), Classification of carbonate rocks (Vol. 1, pp. 108–121). Tulsa: American Association of Petroleum Geologists.

    Google Scholar 

  • Durantez, O., Solé, J., Castiella, J. & Villalobos, L. (1982). Mapa Geológico y Memoria de la Hoja nº 281 (Cervera del Río Alhama). Mapa Geológico de España E. 1:50.000. Segunda Serie (MAGNA), ITGE, 41 pp.

  • Ebneth, S., Shields, G. A., Veizer, J., Miller, J. F., & Shergold, J. H. (2001). High resolution strontium isotope stratigraphy across the Cambrian-Ordovician transition. Geochimica et Cosmochimica Acta, 65, 2273–2292.

    Google Scholar 

  • Errenst, C. (1990). Das korallenführende Kimmeridgium der nordwestlichen Iberischen Ketten und angrenzender gebiete (Fazies, paläogeographie und beschreibung der korallenfauna). Teil 1. Palaeontographica, A, 214(3–6), 121–207.

    Google Scholar 

  • Fan, T., Yu, K., Zhao, J., Jiang, W., Xu, S., Zhang, Y., et al. (2020). Strontium isotope stratigraphy and paleomagnetic age constraints on the evolution history of coral reef islands, northern South China Sea. The Geological Society of America Bulletin, 132, 803–816.

    Google Scholar 

  • Faure, G. (1977). Principles of isotope geology. New York: Wiley.

    Google Scholar 

  • Flecker, R., de Villiers, S., & Ellam, R. M. (2002). Modelling the effect of evaporation on the salinity–87Sr/86Sr relationship in modern and ancient marginal-marine systems: the Mediterranean Messinian. Earth and Planetary Science Letters, 203, 221–233.

    Google Scholar 

  • Flecker, R., & Ellam, R. M. (2006). Identifying Late Miocene episodes of connection and isolation in the Mediterranean-Paratethyan realm using Sr isotopes. Sedimentary Geology, 188–189, 189–203.

    Google Scholar 

  • Frank, T. D., & Lohmann, K. C. (1995). Early cementation during marine-meteoric fluid mixing: Mississippian Lake Valley Formation, New Mexico. Journal of Sedimentary Research, A65, 263–273.

    Google Scholar 

  • Frau, C., Masse, J. P., Fenerci-Masse, M., Tendil, A. J. B., Pictet, A., & Lanteaume, C. (2018). Is Strontium-isotope stratigraphy a reliable tool for dating shallow-marine platform carbonates at the Barremian-Aptian transition? Review of western Tethyan case studies. Carnets de Geologie, 18, 139–154.

    Google Scholar 

  • Friedman, I., & O’Neil, J.R. (1977). Compilation of stable isotope fractionation factors of geochemical interest. In: Data of Geochemistry. US Geological Survey, Professional Paper 440-KK, p 1–12.

  • Frijia, G., & Parente, M. (2008). Strontium isotope stratigraphy in the upper Cenomanian shallow-water carbonates of the southern Apennines: short-term perturbations of marine 87Sr/86Sr during the oceanic anoxic event 2. Palaeogeography, Palaeoclimatology, Palaeoecology, 261, 15–29.

    Google Scholar 

  • Frijia, G., Parente, M., Di Lucia, M., & Mutti, M. (2015). Carbon and strontium isotope stratigraphy of the Upper Cretaceous (Cenomanian–Campanian) shallow-water carbonates of southern Italy: Chronostratigraphic calibration of larger foraminifera biostratigraphy. Cretaceous Research, 53, 110–139.

    Google Scholar 

  • Fritz, P., & Smith, D. G. W. (1970). The isotopic composition of secondary dolomites. Geochimica et Cosmochimica Acta, 34, 1161–1173.

    Google Scholar 

  • García-Frank, A., Ureta, S., & Mas, R. (2008). Aalenian pulses of tectonic activity in the Iberian Basin, Spain. Sedimentary Geology, 209, 15–35.

    Google Scholar 

  • Gierlowski-Kordesch, E. H., & Cassle, C. F. (2015). The “Spirorbis” problem revisited: Sedimentology and biology of microconchids in marine-nonmarine transitions. Earth Science Reviews, 148, 209–227.

    Google Scholar 

  • Gómez Fernández, J.C. (1992). Análisis de la Cuenca sedimentaria de los Cameros durante sus etapas iniciales de relleno en relación con su evolución paleogeográfica. Tesis Doctoral, Univ. Complutense de Madrid, pp 343. Unpublished

  • Gómez, J. J., Aguado, R., Azeredo, A. C., Cortés, J. E., Duarte, L. V., O’Dogherty, L., et al. (2019). The late Triassic-middle Jurassic passive margin stage. In C. Quesada & J. T. Oliveira (Eds.), The geology of Iberia: a geodynamic approach (pp. 113–168). Cham: Springer.

    Google Scholar 

  • Gómez, J. J., Fernández-López, S., & Goy, A. (2004). 5.3.2 Primera fase de postrifting: Jurásico Inferior y Medio. In J. A. Vera (Ed.), Geología de España (pp. 495–503). Madrid: SGE-IGME.

    Google Scholar 

  • Guimerà, J., Alonso, A. & Mas, J. R. (1995). Inversion of an extensional-ramp basin by a newly formed thrust: the Cameros Basin (N. Spain). In: J. G. Buchanan, and P. G. Buchanan (Eds.), Basin Inversion. Geological Society Special Publications, 88, 433–453.

  • Guiraud, M. (1983). Evolution tectono-sédimentaire du bassin Wealdien (Crétacé inferieur) en relais de décrochements de Logroño-Soria (NW Espagne). Tesis Doctoral. Univ. Sciences et Techniques du Languedoc, pp 183. Unpublished.

  • Guiraud, M., & Séguret, M. (1985). A releasing solitary overstep model for the late Jurassic-early Cretaceous (Wealdian) Soria strike-slip Basin (northern Spain). SEPM, Special Publication, 37, 159–175.

    Google Scholar 

  • Hernández-Samaniego, A., Ramirez Merino, J.I., Olivé Davó, A., Alvaro López, M., Ramírez del Pozo, J., Aguilar, M.J. & Meléndez Hevia, A. (1990). Mapa Geológico y Memoria de la Hoja nº 242 (Munilla). Mapa Geológico de España E. 1:50.000. Segunda Serie (MAGNA), ITGE, p 55

  • Hess, J., Scott, L. D., Bender, M. L., Kennet, J. P., & Schiling, J. G. (1989). The Oligocene marine microfossil record: age assessments using strontium isotopes. Paleoceanography, 4, 655–679.

    Google Scholar 

  • Hofer, G., Wagreich, M & Spotl, C. (2013). Carbon, oxygen and strontium isotopes as a tool to decipher marine and non-marine environments: Implications from a case study of cyclic Upper Cretaceous sediments. In: A.V. Bojar, M.C. Melinte-Dobrinescu & J. Smith (Eds.) Isotopic studies in Cretaceous research. Geological society Special Publication, 382, 123–141.

  • Hudson, J. D. (1977). Stable isotopes and limestone lithification. Journal of the Geological Society of London, 133, 637–660.

    Google Scholar 

  • Ingram, B. L., & Sloan, D. (1992). Strontium isotopic composition of estuarine sediments as paleosalinity-paleoclimate indicator. Science, 255, 68–72.

    Google Scholar 

  • James, N.P. & Choquette, P.W. (1990). Limestones-The meteoric diagenetic environment. In: I.A. McIlreath, D.W. Morrow (Eds.), Diagenesis,.Geoscience Canada, Reprint Series, 4, 35–73.

  • Jenkyns, H. C., Jones, C. E., Gröcke, D. R., Hesselbo, S. P., & Parkinson, D. N. (2002). Chemostratigraphy of the Jurassic System: applications, limitations and implications for palaeoceanography. Journal of the Geological Society of London, 159, 351–378.

    Google Scholar 

  • Jones, C. E., Jenkyns, H. C., Coe, A. L., & Hesselbo, S. P. (1994). Sr-isotopic variations in Jurassic and Cretaceous seawater. Geochimica et Cosmochimica Acta, 58, 3061–3074.

    Google Scholar 

  • Koepnick, R. B., Denison, R. E., & Dahl, D. A. (1988). The Cenozoic sea water 87Sr/86Sr curve: data review and implications for correlation of marine strata. Paleoceanography, 3, 743–756.

    Google Scholar 

  • Korte, C. & Ullmann (2016). Permian strontium isotope stratigraphy. In: S.G. Lucas & S.Z. Shen (Eds) The Permian Timescale. Geological Society, London, Special Publications, 450, pp 1–12.

  • Leng, M. J., & Marshall, J. D. (2004). Palaeoclimate interpretation of stable isotope data from lake sediments archives. Quaternary Science Reviews, 23, 7–8.

    Google Scholar 

  • Lohmann, K. C. (1987). Geochemical patterns of meteoric diagenetic systems and their application to studies of paleokarst. In N. P. James & P. W. Choquette (Eds.), paleokarst (pp. 58–80). New York: Springer-Verlag.

    Google Scholar 

  • Lugli, S., Manzi, V., Roveri, M., & Schreiber, B. C. (2010). The Primary Lower Gypsum in the Mediterranean: a new facies interpretation for the first stage of the Messinian salinity crisis. Palaeogeography, Palaeoclimatology, Palaeoecology, 297, 83–99.

    Google Scholar 

  • Madhavaraju, J., Scott, R.W., Selvaraj, K., Lee, Y.I.L. & Löser, H. (2020). Isotopic chemostratigraphy and biostratigraphy of Lower Cretaceous Alisitos Formation (Punta China section), Baja California, Mexico. Geological Journal 1–21.

  • Manzi, V., Gennari, R., Lugli, S., Persico, D., Reghizzi, M., Roveri, M., & Gvirtzman, Z. (2018). The onset of the Messinian Salinity Crisis in the deep Eastern Mediterranean Basin. Terra Nova, 30, 189–198.

    Google Scholar 

  • Martín-Chivelet, J., López-Gómez, J., Aguado, R., Arias, C., Arribas, J., Arribas, M. E., et al. (2019). The late Jurassic-Early Cretaceous Rifting. In C. Quesada & J. T. Oliveira (Eds.), The Geology of Iberia: A Geodynamic Approach (pp. 169–249). Cham: Springer.

    Google Scholar 

  • Mas, J.R., Benito, M.I., Arribas, J., Alonso, A., Arribas, M.E., Lohmann, K.C, Hernán, J., Quijada, E., Suárez, P., & Omodeo-Salé, S. (2011). Evolution of an intra-plate rift basin: the Latest Jurassic–Early Cretaceous Cameros Basin (Northwest Iberian Ranges, North Spain). In L. Pomar, & C. Arenas (Eds.), Geo-Guías, 8. Post-Meeting field trips, 28th International Association of Sedimentologists, Zaragoza (pp. 117–154).

  • Mas, R., Alonso, A., & Guimerà, J. (1993). Evolución Tectonosedimentaria de una Cuenca Extensional Intraplaca: La Cuenca Finijurásica-Eocretácica de Los Cameros (La Rioja-Soria). Revista de la Sociedad Geológica de España, 6, 129–144.

    Google Scholar 

  • Mas, R., Arribas, M. E., González-Acebrón, L., Quijada, I. E., Campos-Soto, S., Suarez-Gonzalez, P., et al. (2019). Coastal wetlands as markers of transgression in proximal extensional systems (Berriasian, W Cameros Basin, Spain). Journal of Iberian Geology, 45, 1–27.

    Google Scholar 

  • Mas, R., Benito, M. I., Arribas, J., Serrano, A., Guimerà, J., Alonso, A., & Alonso-Azcárate, J. (2002). La Cuenca de Cameros: desde la extensión finijurásica-eocretácica a la inversión Terciaria - Implicaciones en la exploración de hidrocarburos. Zubía Monográfico, 14, 9–64.

    Google Scholar 

  • Masse, J. P., Bouaziz, S., Amon, E. O., Trakowski, R., Sandulescu, M., Platel, J. P., et al. (2000). Early Aptian. In J. Decorut, M. Gaetani, B. Vrielynck, E. Barrier, B. Biju-Duval, M. F. Brunet, et al. (Eds.), Atlas peri-Tethys palaeogeographical maps (Map-13). Paris: CCGM.

    Google Scholar 

  • McArthur, J. M. (1994). Recent trends in strontium isotope stratigraphy. Terra Nova, 6, 331–358.

    Google Scholar 

  • McArthur, J. M., Burnett, J., & Hancock, J. M. (1992). Strontium isotope stratigraphy in the Late Cretaceous intercontinental correlation of the Campanian/Maastrichtian boundary. Terra Nova, 4, 385–393.

    Google Scholar 

  • McArthur, J. M., Chen, M., Gale, A. S., Thirlwall, M. F., & Kennedy, W. J. (1993). Strontium isotope stratigraphy for the Late Cretaceous: age models and intercontinental correlations for the Campanian. Paleoceanography, 8, 859–873.

    Google Scholar 

  • McArthur, J. M., Donovan, D. T., Thirlwall, M. F., Fouke, B. W., & Mattey, D. (2000). Strontium isotope profile of the Early Toarcian (Jurassic) Oceanic Anoxic Event, the duration of ammonite biozones, and belemnite palaeotemperatures. Earth and Planetary Science Letters, 179, 269–285.

    Google Scholar 

  • McArthur, J. M., Howarth, R. J., & Bailey, T. R. (2001). Strontium isotope stratigraphy: LOWESS version 3: Best fit to the marine Sr-isotope curve for 0–509 Ma and accompanying look-up table for deriving numerical age. The Journal of Geology, 109, 155–170.

    Google Scholar 

  • McArthur, J. M., Howarth, R. J., & Shields, G. A. (2012). Strontium isotope stratigraphy. In F. M. Gradstein, J. G. Ogg, M. D. Schmitz, & G. M. Ogg (Eds.), The Geological Time Scale 2012 (pp. 127–144). Oxford: Elsevier B.V.

    Google Scholar 

  • McArthur, J. M., Janssen, N. M. M., Reboulet, S., Leng, M. J., Thirlwall, M. F., & van de Schootbrugge, B. (2007). Early Cretaceous ice-cap volume, palaeo-temperatures (Mg, δ18O), and isotope stratigraphy (δ13C, 87Sr/86Sr) from Tethyan belemnites. Palaeogeography, Palaeoclimatology, Palaeoecology, 248, 391–430.

    Google Scholar 

  • McArthur, J. M., Kennedy, W. J., Chen, M., Thirlwall, M. F., & Gale, A. S. (1994). Strontium isotope stratigraphy for the Late Cretaceous: Direct numerical age calibration of the Sr-isotope curve for the U.S. Western Interior Seaway. Palaeogeography, Palaeoclimatology, Palaeoecology, 108, 95–119.

    Google Scholar 

  • McKenzie, J. A. (1981). Holocene dolomitization of calcium carbonate sediments from the coastal sabkhas of Abu Dhabi, UAE: a stable isotope study. The Journal of Geology, 89, 185198.

    Google Scholar 

  • Meknassi, S., Dera, G., Cardone, T., De Rafélis, M., Brahmi, C., & Chavagnac, V. (2018). Sr isotope ratios of modern carbonate shells: Good and bad news for chemostratigraphy. Geology, 46, 1003–1006.

    Google Scholar 

  • Mensink, H. (1966). Stratigraphie und Paláogeographie des marinen Jura in den nordwestlichen Iberisehen Ketten (Spanien). Beihefte zum Geologischen Jahrbuch, 44, 55–102.

    Google Scholar 

  • Miller, K. G., Feigenson, M. D., Kent, D. V., & Olson, R. K. (1988). Upper Eocene to Oligocene isotope (87Sr/86Sr, δ18O, δ13C) standard section, Deep Sea Drilling Project Site 522. Paleoceanography, 3, 223–233.

    Google Scholar 

  • Müller, D. W., McKenzie, J. A., & Mueller, P. A. (1990). Abu Dhabi sabkha, Persian Gulf, revisited: application of strontium isotopes to test an early dolomitization model. Geology, 18, 618–621.

    Google Scholar 

  • Müller, D. W., & Mueller, P. A. (1991). Origin and age of the Mediterranean Messinian evaporites: implications from Sr isotopes. Earth and Planetary Science Letters, 107, 1–12.

    Google Scholar 

  • Nieto, L. M., Ruiz-Ortiz, P. A., Rey, J., & Benito, M. I. (2008). Strontium-isotope stratigraphy as a constraint on the age of condensed levels: examples from the Jurassic of the Subbetic Zone (southern Spain). Sedimentology, 55, 1–29.

    Google Scholar 

  • Ochoa, M. (2006). Procedencia y diagénesis del registro arenoso del Grupo Urbión (Cretácico inferior) de la Cuenca de Cameros (Cordillera Ibérica septentrional). Unpublished PhD Thesis. Universidad Complutense de Madrid.

  • Omodeo-Salé, S., Guimerà, J., Mas, R., & Arribas, J. (2014). Tecono-Stratigraphic Evolution of an Inverted Extensional Basin: The Cameros Basin (North of Spain). International Journal of Earth Sciences, 103(6), 1597–1620.

    Google Scholar 

  • Omodeo-Salé, S., Salas, R., Guimerà, J., Ondrak, R., Suarez-Ruiz, I., Martinez, L., et al. (2015). Subsidence and thermal history of an inverted Late Jurassic-Early Cretaceous extensional basin (Cameros, North-central Spain) affected by very low- to low-grade metamorphism. Basin Research, 29, 1–19.

    Google Scholar 

  • Platt, N. H. (1990). Basin evolution and fault reactivation in the western Cameros basin, Northern Spain. Journal of the Geological Society, London, 147, 165–175.

    Google Scholar 

  • Price, G. D., & Gröcke, D. R. (2002). Strontium-isotope stratigraphy and oxygen- and carbon-isotope variation during the Middle Jurassic-Early Cretaceous of the Falkland Plateau, South Atlantic. Palaeogeography Palaeoclimatology Palaeoecology, 183, 209–222.

    Google Scholar 

  • Prokoph, A., Shields, G. A., & Veizer, J. (2008). Compilation and time-series analysis of a marine carbonate δ18O, δ13C, 87Sr/86Sr and δ34S database through Earth history. Earth Science Reviews, 87, 113–133.

    Google Scholar 

  • Quijada, I. E., Benito, M. I., Suarez-Gonzalez, P., Rodríguez-Martínez, M., & Campos-Soto, S. (2020). Challenges to carbonate-evaporite peritidal facies models and cycles: insights from Lower Cretaceous stromatolite-bearing deposits (Oncala Group, N Spain). Sedimentary Geology, 408 10572(1-26). https://doi.org/10.1016/j.sedgeo.2020.105752

    Article  Google Scholar 

  • Quijada, I. E., Suarez-Gonzalez, P., Benito, M. I., Lugli, S., & Mas, R. (2014). From carbonate-sulphate interbeds to carbonate breccias: The role of tectonic deformation and diagenetic processes (Cameros Basin, Lower Cretaceous, N Spain). Sedimentary Geology, 312, 76–98.

    Google Scholar 

  • Quijada, I. E., Suarez-Gonzalez, P., Benito, M. I., & Mas, R. (2013a). New insights on stratigraphy and sedimentology of the Oncala Group (eastern Cameros Basin): implications for the paleogeographic reconstruction of NE Iberia at Berriasian times. Journal of Iberian Geology, 39, 313–334.

    Google Scholar 

  • Quijada, I. E., Suarez-Gonzalez, P., Benito, M. I., & Mas, R. (2013b). Depositional depth of laminated carbonate deposits: insights from the Lower Cretaceous Valdeprado Formation (Cameros Basin, northern Spain). Journal of Sedimentary Research, 83, 241–257.

    Google Scholar 

  • Quijada, I. E., Suarez-Gonzalez, P., Benito, M. I., & Mas, R. (2016). Los isótopos de S en los yesos del Grupo Oncala: evidencia de influencia marina en los depósitos carbonáticos-evaporíticos berriasienses de la cuenca de Cameros (La Rioja-Sonia). Geo-Temas, 16, 555–558.

    Google Scholar 

  • Quijada, I.E, Suarez-Gonzalez, P., Benito, M.I., & Mas, R. (2016b). Tidal versus continental sandy_muddy flat deposits: Evidence_from_the Oncala Group (Early Cretaceous, N Spain). In B. Tessier and J.Y. Reynaud (Eds.), Contributions to Modern and Ancient Tidal Sedimentology: Proceedings of the Tidalites 2012 Conference (pp. 133–159). International Association of Sedimentologists. John Wiley & Sons, Ltd.

  • Ramírez-Merino, J.I., Olivé Davó, A., Hernández Samaniego, A., Alvaro López, M., Aguilar, M.J., Ramirez del Pozo, J., Anadón, P., Molina, E., Gallardo, J. (1990). Mapa Geológico y Memoria de la Hoja nº 241 (Anguiano). Mapa Geológico de España E. 1:50.000. Segunda Serie (MAGNA), ITGE, 63 pp.

  • Rat, J., Mouthereau, F., Brichau, S., Crémades, A., Bernet, M., Balvay, M., et al. (2019). Tectonothermal evolution of the Cameros basin: Implications for tectonics of North Iberia. Tectonics, 38, 440–469.

    Google Scholar 

  • Reghizzi, M., Gennari, R., Douville, E., Lugli, S., Manzi, V., Montagna, P., & Taviani, M. (2017). Isotope stratigraphy (87Sr/86Sr, δ18O, δ13C) of the Sorbas basin (Betic Cordillera, Spain): Paleoceanographic evolution across the onset of the Messinian salinity crisis. Palaeogeography, Palaeoclimatology, Palaeoecology, 469, 60–73.

    Google Scholar 

  • Roveri, M., Gennari, R., Persico, D., Rossi, F. P., Lugli, S., Manzi, V., et al. (2019). A new chronostratigraphic and palaeoenvironmental framework for the end of the Messinian salinity crisis in the Sorbas Basin (Betic Cordillera, southern Spain). Geological Journal, 54, 1617–1637.

    Google Scholar 

  • Roveri, M., Lugli, S., Manzi, V., Gennari, R., & Schreiber, B. C. (2014). Highresolution strontium isotope stratigraphy of the Messinian deep Mediterranean basins: Implications for marginal to central basins correlation. Marine Geology, 349, 113–125.

    Google Scholar 

  • Sacristán-Horcajada, S., Arribas, M. E., & Mas, R. (2016). Pedogenetic calcretes in early syn-rift alluvial systems (Upper Jurassic, West Cameros Basin), northern Spain. Journal of Sedimentary Research, 86, 268–286.

    Google Scholar 

  • Sacristán-Horcajada, S., Mas, R., & Arribas, M. E. (2015). Early syn-rift evolution in the W Cameros Basin (Upper Jurassic, NW Iberian Range) Spain. Journal of Sedimentary Research, 85, 794–819.

    Google Scholar 

  • Salas, R., & Casas, A. (1993). Mesozoic extensional tectonics, stratigraphy and crustal evolution during the Alpine cycle of the eastern Iberian basin. Tectonophysics, 228(1–2), 33–55.

    Google Scholar 

  • Salas, R., Guimerà, J., Mas, R., Martín-Closas, C., Melendez, A., & Alonso, Á. (2001). Evolution of the Mesozoic central Iberian rift system and its Cainozoic inversion (Iberian chain). Memoires Du Museum National d’Histoire Naturelle, 186, 145–186.

    Google Scholar 

  • Scasso, R. A., McArthur, J. M., del Río, C. J., Martínez, S. A., & Thirlwall, M. F. (2001). 87Sr/86Sr late Miocene age of fossil molluscs in the “entrerriense” of Valdés península (Chubut, Argentina). Journal of South American Earth Sciences, 14, 319–329.

    Google Scholar 

  • Schmitz, B., Åberg, G., Werdelin, L., Forey, P., & Bendix-Almgreen, S. (1991). 87Sr/86Sr, Na, F, Sr, and La in skeletal fish debris as a measure of the paleosalinity of fossil-fish habitats. Geological Society of America Bulletin, 103, 786–794.

    Google Scholar 

  • Sessa, J. A., Ivany, L. C., Schlossnagle, T. H., Samson, S. D., & Schellenberg, S. A. (2012). The fidelity of oxygen and strontium isotope values from shallow shelf settings: Implications for temperature and age reconstructions. Palaeogeography, Palaeoclimatology, Palaeoecology, 342–343, 27–39.

    Google Scholar 

  • Steuber, T. (2001). Strontium isotope stratigraphy of Turonian-Campanian Gosau-type rudist formations in the Northern Calcareous and Central Alps (Austria and Germany). Cretaceous Research, 22, 429–441.

    Google Scholar 

  • Steuber, T., & Schlüter, M. (2012). Strontium-isotope stratigraphy of Upper Cretaceous rudist bivalves: biozones, evolutionary patterns and sea-level change calibrated to numerical ages. Earth-Science Reviews, 114, 42–60.

    Google Scholar 

  • Steuber, T., & Veizer, J. (2002). Phanerozoic record of plate tectonic control of seawater chemistry and carbonate sedimentation. Geology, 30, 1123–1126.

    Google Scholar 

  • Stueber, A. M., Pushkar, P., & Hetherington, E. A. (1984). A strontium isotopic study of Smackover brines and associated solids, southern Arkansas. Geochimica et Cosmochimica Acta, 48, 1637–1649.

    Google Scholar 

  • Stueber, A. M., Pushkar, P., & Hetherington, E. A. (1987). A strontium isotopic study of formation waters from the Illionois Basin, U.S.A. Applied Geochemistry, 2, 477–494.

    Google Scholar 

  • Suarez-Gonzalez, P (2015). Sedimentología y paleogeografía de los sistemas de humedales costeros de la Fm Leza (Cretácico Inferior, Cuenca de Cameros): implicaciones en el origen y desarrollo de los depósitos microbianos asociados. PhD. Thesis, Universidad Complutense de Madrid. 363 pp. ISBN: 978-84-608-3251-5

  • Suarez-Gonzalez, P., Benito, M. I., Mas, R., Quijada, I. E., & Campos-Soto, S. (2016). Influencia del Keuper y de la estructuración tardivarisca en la arquitectura de las unidades sin-extensionales del borde norte de la Cuenca de Cameros. Geo-Temas, 15, 185–188.

    Google Scholar 

  • Suarez-Gonzalez, P., Benito, M. I., Quijada, I. E., Mas, R., & Campos-Soto, S. (2019). ‘Trapping and binding’: A review of the factors controlling the development of fossil agglutinated microbialites and their distribution in space and time. Earth-Science Reviews, 194, 182–215.

    Google Scholar 

  • Suarez-Gonzalez, P., Quijada, I. E., Benito, M. I., & Mas, R. (2013). Eustatic versus tectonic control in an intraplate rift basin (Leza Fm, Cameros Basin): chronostratigraphic and paleogeographic implications for the Aptian of Iberia. Journal of Iberian Geology, 39, 285–312.

    Google Scholar 

  • Suarez-Gonzalez, P., Quijada, I. E., Benito, M. I., & Mas, R. (2015). Sedimentology of ancient coastal wetlands: Insights from a Cretaceous multifaceted depositional system. Journal of Sedimentary Research, 85, 95–117.

    Google Scholar 

  • Suarez-Gonzalez, P., Quijada, I.E., Benito, M.I. & Mas, R. (2016b). Do stromatolites need tides to trap ooids? Insights from a Cretaceous system of coastal-wetlands. In B. Tessier & J.Y. Reynaud (Eds.) Contributions to Modern and Ancient Tidal Sedimentology: Proceedings of the Tidalites 2012 Conference (pp. 161–190). International Association of Sedimentologists. John Wiley & Sons.

  • Suarez-Gonzalez, P., Quijada, I. E., Benito, M. I., Mas, R., Merinero, R., & Riding, R. (2014). Origin and significance of lamination in Lower Cretaceous stromatolites and proposal for a quantitative approach. Sedimentary Geology, 300, 11–27.

    Google Scholar 

  • Topper, R.P.M., Flecker, R., Meijer, P.Th. & Wortel, M.J.R. (2011). A box model of the Late Miocene Mediterranean Sea: implications from combined 87Sr/86Sr and salinity data. Paleoceanography, 26, PA3223

  • Topper, R. P. M., & Meijer, PTh. (2013). A modelling perspective on spatial and temporal variations in Messinian evaporite deposits. Marine Geology, 336, 44–60.

    Google Scholar 

  • Tucker, M., & Wright, V. P. (1990). Carbonate sedimentology. Oxford: Blackwell scientific publications.

    Google Scholar 

  • Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Buhl, D., Bruhn, F., et al. (1999). 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chemical Geology, 161, 59–88.

    Google Scholar 

  • Veizer, J., Buhl, D., Diener, A., Ebneth, S., Podlaha, O. G., Bruckschen, P., et al. (1997). Strontium isotope stratigraphy: potential resolution and event correlation. Palaeogeography, Palaeoclimatology, Palaeoecology, 132, 65–77.

    Google Scholar 

  • Veizer, J., & Compston, W. (1974). 87Sr/86Sr composition of seawater during the Phanerozoic. Geochimica et Cosmochimica Acta, 38, 1461–1484.

    Google Scholar 

  • Warren, J. K. (2016). Evaporites: A geological compendium. Heidelberg: Springer.

    Google Scholar 

  • Weedon, G. P., & Jenkyns, H. C. (1999). Cyclostratigraphy and the Early Jurassic timescale: Data from the Belemnite Marls, southern England. Geological Society of America Bulletin, 111, 1823–1840.

    Google Scholar 

  • Wehmiller, J. F., Burleigh Harris, W., Boutin, B. S., & Farrell, K. M. (2012). Calibration of amino acid racemization (AAR) kinetics in United States mid-Atlantic Coastal Plain Quaternary mollusks using 87Sr/86Sr analyses: Evaluation of kinetic models and estimation of regional Late Pleistocene temperature history. Quaternary Geochronology, 7, 21–36.

    Google Scholar 

  • Wierzbowski, H., Anckiewicz, R., Pawlak, J., & Rogov, M. A. (2017). Revised Middle-Upper Jurassic strontium isotope stratigraphy. Chemical Geology, 466, 239–255.

    Google Scholar 

  • Wilde, S. (1990). The Bathonian and Callovian of the Northwest-Iberian Range: Stages of facial and paleogeographical differentiation on an epicontinental platform. Cuadernos de Geología Ibérica, 14, 113–142.

    Google Scholar 

  • Williamson, T., Henderson, R. A., Price, G. D., & Collerson, K. D. (2012). Strontium-isotope stratigraphy of the Lower Cretaceous of Australia. Cretaceous Research, 36, 24–36.

    Google Scholar 

  • Zuo, F., Heinhofer, U., Huck, S., Bodin, S., Erbacher, J., & Bai, H. (2018). Coupled δ13C and 87Sr/86Sr chemostratigraphy of Kimmeridgian shoal-water deposits: A new composite record from the Lower Saxony Basin, Germany. Sedimentary Geology, 376, 18–31.

    Google Scholar 

Download references

Acknowledgements

This work is dedicated to the memory of Dr. Carmen Galindo, who was always ready to help with a beautiful smile. Thanks to her we have a great Geochronology Laboratory, “right below our feet”. This research was funded by the Spanish projects PGC2018-094034-B-C21 and CGL2014-52670-P, the ‘Sedimentary geology, palaeoclimate and environmental change’ Research Group of the Complutense University of Madrid‒Madrid Community. We are also grateful to José Manuel Fuenlabrada (Chema), Lora Wingate, Aitor Antón, Juan Carlos Salamanca and Beatriz Moral, for their technical support. Authors thanks Dr. Concha Arenas and an anonymous reviewer for their constructive suggestions and comments

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Isabel Benito.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 27 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benito, M.I., Suarez-Gonzalez, P., Quijada, I.E. et al. Constraints of applying strontium isotope stratigraphy in coastal and shallow marine environments: insights from Lower Cretaceous carbonates deposited in an active tectonic setting (N Iberian Basin, Spain). J Iber Geol 47, 151–169 (2021). https://doi.org/10.1007/s41513-020-00142-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41513-020-00142-z

Keywords

Palabras clave

Navigation