Abstract
The Lower Cretaceous Leza Formation is an essentially carbonate unit deposited at the northernmost active margin of the Cameros Basin (N Spain) under an extensional tectonic regime. This unit is composed of freshwater, marine-influenced, marginal-marine and hypersaline marine carbonate facies, interbedded with variable amounts of alluvial deposits, mainly derived from the erosion of the Jurassic substrate. 87Sr/86Sr, δ18O and δ13C analyses were obtained from carbonate facies of the Eastern and Western sectors of the basin. δ18O values follow the expected trend in both sectors: they are more negative (down to − 7.9‰) in freshwater carbonates and more positive (up to + 2.8‰) in marginal-marine to hypersaline facies. However, independently of the seawater or freshwater influence, in the Western Sector the 87Sr/86Sr values (0.707373–0.707801) are significantly lower and closer to the published Lower Cretaceous seawater 87Sr/86Sr ratios, than those of the Eastern Sector (0.707988–0.709033), where the overall marine influence was relatively high and the alluvial input low. These data strongly suggest that 87Sr/86Sr ratios were mainly controlled by those of the riverine freshwater arriving to the coastal and marine areas after the weathering and erosion of the Jurassic carbonates or siliciclastic rocks, in the Western and Eastern sectors, respectively. Thus, data indicate that, in coastal and shallow marine carbonates, the influence of the riverine water on the 87Sr/86Sr ratios should be systematically evaluated. This is particularly necessary in active tectonic settings, where the uplifted areas are significantly prone to weathering and erosion and where alluvial fan systems commonly developed, eventually discharging into coastal and shallow marine areas.
Resumen
La Formación Leza es una unidad esencialmente carbonática del Cretácico Inferior depositada en el borde norte de la cuenca de Cameros (N de España) en un contexto tectónico extensional. Está formada por facies carbonáticas de agua dulce, con influencia marina, marinas marginales e hipersalinas, intercaladas con cantidades variables de depósitos aluviales, procedentes de la erosión del sustrato Jurásico de la cuenca. Se han obtenido datos de 87Sr/86Sr, δ18O y δ13C de las facies carbonáticas en las zonas Oriental y Occidental de la cuenca. Los valores de δ18O siguen la tendencia esperable en ambas zonas: son más negativos (hasta-7.9‰) en los carbonatos de agua dulce y más positivos (hasta + 2.8‰) en las facies marinas marginales e hipersalinas. Sin embargo, independientemente de la influencia marina o de agua dulce, los valores de 87Sr/86Sr de la zona Occidental (0.707373–0.707801) son significativamente inferiores y más próximos a los valores publicados para los carbonatos marinos del Cretácico Inferior, que los de la zona Oriental (0.707988–0.709033), donde la influencia marina fue, en general, relativamente mayor y el aporte aluvial menor. Estos resultados indican que las relaciones de 87Sr/86Sr estuvieron controladas principalmente por las del agua dulce fluvial que llegaba a las zonas costeras y marinas tras la meteorización y erosión del sustrato Jurásico de la cuenca, carbonático en el Sector Occidental y siliciclástico en el Oriental, y sugieren que, para la interpretación de las relaciones de 87Sr/86Sr en carbonatos costeros y marinos someros, sobre todo de aquéllos depositados en contextos tectónicamente activos, se debería evaluar sistemáticamente la influencia del agua dulce.
Similar content being viewed by others
References
Allan, J. R., & Matthews, R. K. (1977). Carbon and oxygen isotopes as diagenetic and stratigraphic tools: data from surface and subsurface of Barbados, West Indies. Geology, 5, 16–20.
Allan, J. R., & Matthews, R. K. (1982). Isotope signatures associated with early meteoric diagenesis. Sedimentology, 29, 797–817.
Alonso, A. & Mas, J.R. (1988). El Jurásico Superior marino en el sector Demanda-Cameros (La Rioja-Soria). III Coloquio de Estratigrafía y Paleogeografía del Jurásico de España, Logroño, 1988. Programa y resúmenes de comunicaciones, p 5–8.
Alonso, A., & Mas, J. R. (1990). El Jurásico Superior marino en el sector Demanda-Cameros (La Rioja-Soria). Cuadernos de Geología Ibérica, 14, 173–198.
Alonso, A., & Mas, J. R. (1993). Control tectónico e influencia del eustatismo en la sedimentación del Cretácico inferior de la Cuenca de Los Cameros. Cuadernos de Geología Ibérica, 17, 285–310.
Anderson, P. S., Wasserbug, G. J., & Inorl, J. (1992). The sources and transport of Sr and Nd isotopes in the Baltic Sea. Earth and Planetary Science Letters, 113, 459–472.
Arenas, C., Casanova, J., & Pardo, G. (1997). Stable-isotope characterization of the Miocene lacustrine systems of Los Monegros (Ebro Basin, Spain): palaeogeographic and palaeoclimatic implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 128, 133–155.
Arribas, J., Alonso, A., Mas, R., Tortosa, A., Rodas, M., Barrenechea, J. F., et al. (2003). Sandstone petrography of continental depositional sequences of a intraplate rift basin: Western Cameros Basin (North Spain). Journal of Sedimentary Research, 73, 309–327.
Azmy, K., Veizer, J., Wenzel, B., Bassett, M. G., & Copper, P. (1999). Silurian strontium isotope stratigraphy. Geological Society of America Bulletin, 111, 475–483.
Banner, J. L. (1995). Application of the trace element and isotope geochemistry of strontium to studies of carbonate diagenesis. Sedimentology, 42, 805–824.
Banner, J. L., Musgrove, M., & Capo, R. (1994). Tracing ground-water evolution in a limestone aquifer using Sr isotopes: effects of multiple sources of dissolved ions and mineral-solution reactions. Geology, 22, 687–690.
Barbieri, M., Castorina, F., Colalongo, M. L., Pasini, G., & Valani, S. C. (1998). Worldwide correlation of the Pliocene/Pleistocene GSSP at Vrica (southern Italy) confirmed by strontium isotope stratigraphy. Newsletters on Stratigraphy, 36, 177–187.
Benito, M. I., Lohmann, K. C., & Mas, R. (2001). Discrimination of multiple episodes of meteoric diagenesis in a Kimmeridgian reefal complex, North Iberian Range, Spain. Journal of Sedimentary Research, 71, 280–393.
Benito, M. I., Lohmann, K. C., & Mas, R. (2005). Late Jurassic paleogeography and paleoclimate in the Northern Iberian Basin of Spain: constrains from diagenetic records in reefal and continental carbonates. Journal of Sedimentary Research, 75, 82–96.
Benito, M. I., & Mas, R. (2002). Evolución diagenética de los carbonatos arrecifales de la Formación Torrecilla en Cameros y de los carbonatos continentales suprayacentes (Kimmeridgiense inferior-Titónico) en el sector de Soria. Cuenca de Cameros N. España. Cuadernos de Geología Ibérica, 28, 65–92.
Benito, M. I., & Mas, R. (2006). Sedimentary evolution of the Torrecilla Reef Complex in response to tectonically forced regression (Early Kimmeridgian, Northern Spain). Sedimentary Geology, 183, 31–49.
Benke, K. (1981). Die Dogger/Malm-Wende in den NW-Keltiberischen Ketten (Spanien) und angrenzenden Gebieten. Sedimentologie Stratigraphie und Paláogeographie. Facies, 4, 95–164.
Benke, K., Dürkoop, A., Errenst, C., & Mensik, H. (1981). Die Korallenkalke im Ober-Jura der nordwestlichen Iberischen Ketten (Spanien). Facies, 4, 27–94.
Bodin, S., Fiet, N., Godet, A., Matera, V., Westermann, S., Clément, A., et al. (2009). Early Cretaceous (late Berriasian to early Aptian) palaeoceanographic change along the northwestern Tethyan margin (Vocontian Trough, southeastern France): δ13C, δ18O and Sr-isotope belemnite and whole-rock records. Cretaceous Research, 30, 1247–1262.
Boix, C., Frijia, G., Vicedo, V., Bernaus, J. M., Di Lucia, M., Parente, M., & Caus, E. (2011). Larger foraminífera distribution and strontium isotope stratigraphy of the La Cova limestones (Coniacian–Santonian, “Serra del Montsec”, Pyrenees, NE Spain). Cretaceous Research, 32, 806–822.
Bonilla-Rodríguez, A. J., González, L. A., Douglas Walker, J., & Santos, H. (2014). Strontium isotope (87Sr/86Sr) stratigraphy from the Coalcomana-Caprinuloidea rudist assemblage in the Greater Antilles (Puerto Rico, Dominican Republic and Jamaica). Cretaceous Research, 50, 97–109.
Bover-Arnal, T., Moreno-Bedmar, J. A., Frijia, G., Pascual-Cebrian, E., & Salas, R. (2016). Chronostratigraphy of the Barremian-Early Albiano f the Maestrat Basin (E Iberian Peninsula): integrating strontium isotope stratigraphy and ammonoid biostratigraphy. Newsletters on Stratigraphy, 49(1), 41–68.
Bralower, T. J., Fullagar, P. D., Paull, C. K., Dwyer, G. S., & Leckie, R. M. (1997). Mid-Cretaceous strontium-isotope stratigraphy of deep-sea sections. Geological Society of America Bulletin, 109, 1421–1442.
Brasier, M. D., Shields, G. A., Kuleshov, V. N., & Zhegallo, E. A. (1996). Integrated chemo- and biostratigraphic calibration of early animal evolution: Neoproterozoic-early Cambrian of southwest Mongolia. Geological Magazine, 133, 445–485.
Brass, G. W. (1976). The variation of the marine 87Sr/86Sr ratio during Phanerozoic time: interpretation using a flux model. Geochimica et Cosmochimica Acta, 40, 721–730.
Bryant, J. D., Jones, D. S., & Mueller, P. A. (1995). Influence of freshwater flux on 87Sr/86Sr chronostratigraphy in marginal marine environments and dating vertebrate and invertebrate faunas. Journal of Paleontology, 69, 1–6.
Bulard, P.F. (1972). Le Jurassique Moyen et Supérieur de la Chaîne Ibérique sur la bordure du bassin de l’Ebre (Espagne). These Doct. Fac. Sc. Univ. Nice, 2 vol., pp 702
Burke, W. H., Dension, R. E., Hetherington, E. A., Koepnick, R. B., Nelson, H., & Otto, J. B. (1982). Variations of seawater 87Sr/88Sr throughout Phanerozoic time. Geology, 10, 516–519.
Casas-Sainz, A. M., & Simón-Gómez, J. L. (1992). Stress field and thrust kinematics: a model for the tectonic inversion of the Cameros Massif (Spain). Journal of Structural Geology, 14, 521–530.
Caus, E., Frijia, G., Parente, M., Robles-Salcedo, R., & Villalonga, R. (2016). Constraining the age of the last marine sediments in the late Cretaceous of central south Pyrenees (NE Spain): insights from larger benthic foraminifera and strontium isotope stratigraphy. Cretaceous Research, 57, 402–413.
DePaolo, D. J., & Ingram, B. L. (1985). High-resolution stratigraphy with strontium isotopes. Science, 227, 938–941.
Dickson, J. A. D. (1966). Carbonate identification and genesis as revealed by staining. Journal of Sedimentary Petrology, 36(2), 491–505.
Dunham, R. J. (1962). Classification of carbonate rocks according to depositional texture. In W. E. Ham (Ed.), Classification of carbonate rocks (Vol. 1, pp. 108–121). Tulsa: American Association of Petroleum Geologists.
Durantez, O., Solé, J., Castiella, J. & Villalobos, L. (1982). Mapa Geológico y Memoria de la Hoja nº 281 (Cervera del Río Alhama). Mapa Geológico de España E. 1:50.000. Segunda Serie (MAGNA), ITGE, 41 pp.
Ebneth, S., Shields, G. A., Veizer, J., Miller, J. F., & Shergold, J. H. (2001). High resolution strontium isotope stratigraphy across the Cambrian-Ordovician transition. Geochimica et Cosmochimica Acta, 65, 2273–2292.
Errenst, C. (1990). Das korallenführende Kimmeridgium der nordwestlichen Iberischen Ketten und angrenzender gebiete (Fazies, paläogeographie und beschreibung der korallenfauna). Teil 1. Palaeontographica, A, 214(3–6), 121–207.
Fan, T., Yu, K., Zhao, J., Jiang, W., Xu, S., Zhang, Y., et al. (2020). Strontium isotope stratigraphy and paleomagnetic age constraints on the evolution history of coral reef islands, northern South China Sea. The Geological Society of America Bulletin, 132, 803–816.
Faure, G. (1977). Principles of isotope geology. New York: Wiley.
Flecker, R., de Villiers, S., & Ellam, R. M. (2002). Modelling the effect of evaporation on the salinity–87Sr/86Sr relationship in modern and ancient marginal-marine systems: the Mediterranean Messinian. Earth and Planetary Science Letters, 203, 221–233.
Flecker, R., & Ellam, R. M. (2006). Identifying Late Miocene episodes of connection and isolation in the Mediterranean-Paratethyan realm using Sr isotopes. Sedimentary Geology, 188–189, 189–203.
Frank, T. D., & Lohmann, K. C. (1995). Early cementation during marine-meteoric fluid mixing: Mississippian Lake Valley Formation, New Mexico. Journal of Sedimentary Research, A65, 263–273.
Frau, C., Masse, J. P., Fenerci-Masse, M., Tendil, A. J. B., Pictet, A., & Lanteaume, C. (2018). Is Strontium-isotope stratigraphy a reliable tool for dating shallow-marine platform carbonates at the Barremian-Aptian transition? Review of western Tethyan case studies. Carnets de Geologie, 18, 139–154.
Friedman, I., & O’Neil, J.R. (1977). Compilation of stable isotope fractionation factors of geochemical interest. In: Data of Geochemistry. US Geological Survey, Professional Paper 440-KK, p 1–12.
Frijia, G., & Parente, M. (2008). Strontium isotope stratigraphy in the upper Cenomanian shallow-water carbonates of the southern Apennines: short-term perturbations of marine 87Sr/86Sr during the oceanic anoxic event 2. Palaeogeography, Palaeoclimatology, Palaeoecology, 261, 15–29.
Frijia, G., Parente, M., Di Lucia, M., & Mutti, M. (2015). Carbon and strontium isotope stratigraphy of the Upper Cretaceous (Cenomanian–Campanian) shallow-water carbonates of southern Italy: Chronostratigraphic calibration of larger foraminifera biostratigraphy. Cretaceous Research, 53, 110–139.
Fritz, P., & Smith, D. G. W. (1970). The isotopic composition of secondary dolomites. Geochimica et Cosmochimica Acta, 34, 1161–1173.
García-Frank, A., Ureta, S., & Mas, R. (2008). Aalenian pulses of tectonic activity in the Iberian Basin, Spain. Sedimentary Geology, 209, 15–35.
Gierlowski-Kordesch, E. H., & Cassle, C. F. (2015). The “Spirorbis” problem revisited: Sedimentology and biology of microconchids in marine-nonmarine transitions. Earth Science Reviews, 148, 209–227.
Gómez Fernández, J.C. (1992). Análisis de la Cuenca sedimentaria de los Cameros durante sus etapas iniciales de relleno en relación con su evolución paleogeográfica. Tesis Doctoral, Univ. Complutense de Madrid, pp 343. Unpublished
Gómez, J. J., Aguado, R., Azeredo, A. C., Cortés, J. E., Duarte, L. V., O’Dogherty, L., et al. (2019). The late Triassic-middle Jurassic passive margin stage. In C. Quesada & J. T. Oliveira (Eds.), The geology of Iberia: a geodynamic approach (pp. 113–168). Cham: Springer.
Gómez, J. J., Fernández-López, S., & Goy, A. (2004). 5.3.2 Primera fase de postrifting: Jurásico Inferior y Medio. In J. A. Vera (Ed.), Geología de España (pp. 495–503). Madrid: SGE-IGME.
Guimerà, J., Alonso, A. & Mas, J. R. (1995). Inversion of an extensional-ramp basin by a newly formed thrust: the Cameros Basin (N. Spain). In: J. G. Buchanan, and P. G. Buchanan (Eds.), Basin Inversion. Geological Society Special Publications, 88, 433–453.
Guiraud, M. (1983). Evolution tectono-sédimentaire du bassin Wealdien (Crétacé inferieur) en relais de décrochements de Logroño-Soria (NW Espagne). Tesis Doctoral. Univ. Sciences et Techniques du Languedoc, pp 183. Unpublished.
Guiraud, M., & Séguret, M. (1985). A releasing solitary overstep model for the late Jurassic-early Cretaceous (Wealdian) Soria strike-slip Basin (northern Spain). SEPM, Special Publication, 37, 159–175.
Hernández-Samaniego, A., Ramirez Merino, J.I., Olivé Davó, A., Alvaro López, M., Ramírez del Pozo, J., Aguilar, M.J. & Meléndez Hevia, A. (1990). Mapa Geológico y Memoria de la Hoja nº 242 (Munilla). Mapa Geológico de España E. 1:50.000. Segunda Serie (MAGNA), ITGE, p 55
Hess, J., Scott, L. D., Bender, M. L., Kennet, J. P., & Schiling, J. G. (1989). The Oligocene marine microfossil record: age assessments using strontium isotopes. Paleoceanography, 4, 655–679.
Hofer, G., Wagreich, M & Spotl, C. (2013). Carbon, oxygen and strontium isotopes as a tool to decipher marine and non-marine environments: Implications from a case study of cyclic Upper Cretaceous sediments. In: A.V. Bojar, M.C. Melinte-Dobrinescu & J. Smith (Eds.) Isotopic studies in Cretaceous research. Geological society Special Publication, 382, 123–141.
Hudson, J. D. (1977). Stable isotopes and limestone lithification. Journal of the Geological Society of London, 133, 637–660.
Ingram, B. L., & Sloan, D. (1992). Strontium isotopic composition of estuarine sediments as paleosalinity-paleoclimate indicator. Science, 255, 68–72.
James, N.P. & Choquette, P.W. (1990). Limestones-The meteoric diagenetic environment. In: I.A. McIlreath, D.W. Morrow (Eds.), Diagenesis,.Geoscience Canada, Reprint Series, 4, 35–73.
Jenkyns, H. C., Jones, C. E., Gröcke, D. R., Hesselbo, S. P., & Parkinson, D. N. (2002). Chemostratigraphy of the Jurassic System: applications, limitations and implications for palaeoceanography. Journal of the Geological Society of London, 159, 351–378.
Jones, C. E., Jenkyns, H. C., Coe, A. L., & Hesselbo, S. P. (1994). Sr-isotopic variations in Jurassic and Cretaceous seawater. Geochimica et Cosmochimica Acta, 58, 3061–3074.
Koepnick, R. B., Denison, R. E., & Dahl, D. A. (1988). The Cenozoic sea water 87Sr/86Sr curve: data review and implications for correlation of marine strata. Paleoceanography, 3, 743–756.
Korte, C. & Ullmann (2016). Permian strontium isotope stratigraphy. In: S.G. Lucas & S.Z. Shen (Eds) The Permian Timescale. Geological Society, London, Special Publications, 450, pp 1–12.
Leng, M. J., & Marshall, J. D. (2004). Palaeoclimate interpretation of stable isotope data from lake sediments archives. Quaternary Science Reviews, 23, 7–8.
Lohmann, K. C. (1987). Geochemical patterns of meteoric diagenetic systems and their application to studies of paleokarst. In N. P. James & P. W. Choquette (Eds.), paleokarst (pp. 58–80). New York: Springer-Verlag.
Lugli, S., Manzi, V., Roveri, M., & Schreiber, B. C. (2010). The Primary Lower Gypsum in the Mediterranean: a new facies interpretation for the first stage of the Messinian salinity crisis. Palaeogeography, Palaeoclimatology, Palaeoecology, 297, 83–99.
Madhavaraju, J., Scott, R.W., Selvaraj, K., Lee, Y.I.L. & Löser, H. (2020). Isotopic chemostratigraphy and biostratigraphy of Lower Cretaceous Alisitos Formation (Punta China section), Baja California, Mexico. Geological Journal 1–21.
Manzi, V., Gennari, R., Lugli, S., Persico, D., Reghizzi, M., Roveri, M., & Gvirtzman, Z. (2018). The onset of the Messinian Salinity Crisis in the deep Eastern Mediterranean Basin. Terra Nova, 30, 189–198.
Martín-Chivelet, J., López-Gómez, J., Aguado, R., Arias, C., Arribas, J., Arribas, M. E., et al. (2019). The late Jurassic-Early Cretaceous Rifting. In C. Quesada & J. T. Oliveira (Eds.), The Geology of Iberia: A Geodynamic Approach (pp. 169–249). Cham: Springer.
Mas, J.R., Benito, M.I., Arribas, J., Alonso, A., Arribas, M.E., Lohmann, K.C, Hernán, J., Quijada, E., Suárez, P., & Omodeo-Salé, S. (2011). Evolution of an intra-plate rift basin: the Latest Jurassic–Early Cretaceous Cameros Basin (Northwest Iberian Ranges, North Spain). In L. Pomar, & C. Arenas (Eds.), Geo-Guías, 8. Post-Meeting field trips, 28th International Association of Sedimentologists, Zaragoza (pp. 117–154).
Mas, R., Alonso, A., & Guimerà, J. (1993). Evolución Tectonosedimentaria de una Cuenca Extensional Intraplaca: La Cuenca Finijurásica-Eocretácica de Los Cameros (La Rioja-Soria). Revista de la Sociedad Geológica de España, 6, 129–144.
Mas, R., Arribas, M. E., González-Acebrón, L., Quijada, I. E., Campos-Soto, S., Suarez-Gonzalez, P., et al. (2019). Coastal wetlands as markers of transgression in proximal extensional systems (Berriasian, W Cameros Basin, Spain). Journal of Iberian Geology, 45, 1–27.
Mas, R., Benito, M. I., Arribas, J., Serrano, A., Guimerà, J., Alonso, A., & Alonso-Azcárate, J. (2002). La Cuenca de Cameros: desde la extensión finijurásica-eocretácica a la inversión Terciaria - Implicaciones en la exploración de hidrocarburos. Zubía Monográfico, 14, 9–64.
Masse, J. P., Bouaziz, S., Amon, E. O., Trakowski, R., Sandulescu, M., Platel, J. P., et al. (2000). Early Aptian. In J. Decorut, M. Gaetani, B. Vrielynck, E. Barrier, B. Biju-Duval, M. F. Brunet, et al. (Eds.), Atlas peri-Tethys palaeogeographical maps (Map-13). Paris: CCGM.
McArthur, J. M. (1994). Recent trends in strontium isotope stratigraphy. Terra Nova, 6, 331–358.
McArthur, J. M., Burnett, J., & Hancock, J. M. (1992). Strontium isotope stratigraphy in the Late Cretaceous intercontinental correlation of the Campanian/Maastrichtian boundary. Terra Nova, 4, 385–393.
McArthur, J. M., Chen, M., Gale, A. S., Thirlwall, M. F., & Kennedy, W. J. (1993). Strontium isotope stratigraphy for the Late Cretaceous: age models and intercontinental correlations for the Campanian. Paleoceanography, 8, 859–873.
McArthur, J. M., Donovan, D. T., Thirlwall, M. F., Fouke, B. W., & Mattey, D. (2000). Strontium isotope profile of the Early Toarcian (Jurassic) Oceanic Anoxic Event, the duration of ammonite biozones, and belemnite palaeotemperatures. Earth and Planetary Science Letters, 179, 269–285.
McArthur, J. M., Howarth, R. J., & Bailey, T. R. (2001). Strontium isotope stratigraphy: LOWESS version 3: Best fit to the marine Sr-isotope curve for 0–509 Ma and accompanying look-up table for deriving numerical age. The Journal of Geology, 109, 155–170.
McArthur, J. M., Howarth, R. J., & Shields, G. A. (2012). Strontium isotope stratigraphy. In F. M. Gradstein, J. G. Ogg, M. D. Schmitz, & G. M. Ogg (Eds.), The Geological Time Scale 2012 (pp. 127–144). Oxford: Elsevier B.V.
McArthur, J. M., Janssen, N. M. M., Reboulet, S., Leng, M. J., Thirlwall, M. F., & van de Schootbrugge, B. (2007). Early Cretaceous ice-cap volume, palaeo-temperatures (Mg, δ18O), and isotope stratigraphy (δ13C, 87Sr/86Sr) from Tethyan belemnites. Palaeogeography, Palaeoclimatology, Palaeoecology, 248, 391–430.
McArthur, J. M., Kennedy, W. J., Chen, M., Thirlwall, M. F., & Gale, A. S. (1994). Strontium isotope stratigraphy for the Late Cretaceous: Direct numerical age calibration of the Sr-isotope curve for the U.S. Western Interior Seaway. Palaeogeography, Palaeoclimatology, Palaeoecology, 108, 95–119.
McKenzie, J. A. (1981). Holocene dolomitization of calcium carbonate sediments from the coastal sabkhas of Abu Dhabi, UAE: a stable isotope study. The Journal of Geology, 89, 185198.
Meknassi, S., Dera, G., Cardone, T., De Rafélis, M., Brahmi, C., & Chavagnac, V. (2018). Sr isotope ratios of modern carbonate shells: Good and bad news for chemostratigraphy. Geology, 46, 1003–1006.
Mensink, H. (1966). Stratigraphie und Paláogeographie des marinen Jura in den nordwestlichen Iberisehen Ketten (Spanien). Beihefte zum Geologischen Jahrbuch, 44, 55–102.
Miller, K. G., Feigenson, M. D., Kent, D. V., & Olson, R. K. (1988). Upper Eocene to Oligocene isotope (87Sr/86Sr, δ18O, δ13C) standard section, Deep Sea Drilling Project Site 522. Paleoceanography, 3, 223–233.
Müller, D. W., McKenzie, J. A., & Mueller, P. A. (1990). Abu Dhabi sabkha, Persian Gulf, revisited: application of strontium isotopes to test an early dolomitization model. Geology, 18, 618–621.
Müller, D. W., & Mueller, P. A. (1991). Origin and age of the Mediterranean Messinian evaporites: implications from Sr isotopes. Earth and Planetary Science Letters, 107, 1–12.
Nieto, L. M., Ruiz-Ortiz, P. A., Rey, J., & Benito, M. I. (2008). Strontium-isotope stratigraphy as a constraint on the age of condensed levels: examples from the Jurassic of the Subbetic Zone (southern Spain). Sedimentology, 55, 1–29.
Ochoa, M. (2006). Procedencia y diagénesis del registro arenoso del Grupo Urbión (Cretácico inferior) de la Cuenca de Cameros (Cordillera Ibérica septentrional). Unpublished PhD Thesis. Universidad Complutense de Madrid.
Omodeo-Salé, S., Guimerà, J., Mas, R., & Arribas, J. (2014). Tecono-Stratigraphic Evolution of an Inverted Extensional Basin: The Cameros Basin (North of Spain). International Journal of Earth Sciences, 103(6), 1597–1620.
Omodeo-Salé, S., Salas, R., Guimerà, J., Ondrak, R., Suarez-Ruiz, I., Martinez, L., et al. (2015). Subsidence and thermal history of an inverted Late Jurassic-Early Cretaceous extensional basin (Cameros, North-central Spain) affected by very low- to low-grade metamorphism. Basin Research, 29, 1–19.
Platt, N. H. (1990). Basin evolution and fault reactivation in the western Cameros basin, Northern Spain. Journal of the Geological Society, London, 147, 165–175.
Price, G. D., & Gröcke, D. R. (2002). Strontium-isotope stratigraphy and oxygen- and carbon-isotope variation during the Middle Jurassic-Early Cretaceous of the Falkland Plateau, South Atlantic. Palaeogeography Palaeoclimatology Palaeoecology, 183, 209–222.
Prokoph, A., Shields, G. A., & Veizer, J. (2008). Compilation and time-series analysis of a marine carbonate δ18O, δ13C, 87Sr/86Sr and δ34S database through Earth history. Earth Science Reviews, 87, 113–133.
Quijada, I. E., Benito, M. I., Suarez-Gonzalez, P., Rodríguez-Martínez, M., & Campos-Soto, S. (2020). Challenges to carbonate-evaporite peritidal facies models and cycles: insights from Lower Cretaceous stromatolite-bearing deposits (Oncala Group, N Spain). Sedimentary Geology, 408 10572(1-26). https://doi.org/10.1016/j.sedgeo.2020.105752
Quijada, I. E., Suarez-Gonzalez, P., Benito, M. I., Lugli, S., & Mas, R. (2014). From carbonate-sulphate interbeds to carbonate breccias: The role of tectonic deformation and diagenetic processes (Cameros Basin, Lower Cretaceous, N Spain). Sedimentary Geology, 312, 76–98.
Quijada, I. E., Suarez-Gonzalez, P., Benito, M. I., & Mas, R. (2013a). New insights on stratigraphy and sedimentology of the Oncala Group (eastern Cameros Basin): implications for the paleogeographic reconstruction of NE Iberia at Berriasian times. Journal of Iberian Geology, 39, 313–334.
Quijada, I. E., Suarez-Gonzalez, P., Benito, M. I., & Mas, R. (2013b). Depositional depth of laminated carbonate deposits: insights from the Lower Cretaceous Valdeprado Formation (Cameros Basin, northern Spain). Journal of Sedimentary Research, 83, 241–257.
Quijada, I. E., Suarez-Gonzalez, P., Benito, M. I., & Mas, R. (2016). Los isótopos de S en los yesos del Grupo Oncala: evidencia de influencia marina en los depósitos carbonáticos-evaporíticos berriasienses de la cuenca de Cameros (La Rioja-Sonia). Geo-Temas, 16, 555–558.
Quijada, I.E, Suarez-Gonzalez, P., Benito, M.I., & Mas, R. (2016b). Tidal versus continental sandy_muddy flat deposits: Evidence_from_the Oncala Group (Early Cretaceous, N Spain). In B. Tessier and J.Y. Reynaud (Eds.), Contributions to Modern and Ancient Tidal Sedimentology: Proceedings of the Tidalites 2012 Conference (pp. 133–159). International Association of Sedimentologists. John Wiley & Sons, Ltd.
Ramírez-Merino, J.I., Olivé Davó, A., Hernández Samaniego, A., Alvaro López, M., Aguilar, M.J., Ramirez del Pozo, J., Anadón, P., Molina, E., Gallardo, J. (1990). Mapa Geológico y Memoria de la Hoja nº 241 (Anguiano). Mapa Geológico de España E. 1:50.000. Segunda Serie (MAGNA), ITGE, 63 pp.
Rat, J., Mouthereau, F., Brichau, S., Crémades, A., Bernet, M., Balvay, M., et al. (2019). Tectonothermal evolution of the Cameros basin: Implications for tectonics of North Iberia. Tectonics, 38, 440–469.
Reghizzi, M., Gennari, R., Douville, E., Lugli, S., Manzi, V., Montagna, P., & Taviani, M. (2017). Isotope stratigraphy (87Sr/86Sr, δ18O, δ13C) of the Sorbas basin (Betic Cordillera, Spain): Paleoceanographic evolution across the onset of the Messinian salinity crisis. Palaeogeography, Palaeoclimatology, Palaeoecology, 469, 60–73.
Roveri, M., Gennari, R., Persico, D., Rossi, F. P., Lugli, S., Manzi, V., et al. (2019). A new chronostratigraphic and palaeoenvironmental framework for the end of the Messinian salinity crisis in the Sorbas Basin (Betic Cordillera, southern Spain). Geological Journal, 54, 1617–1637.
Roveri, M., Lugli, S., Manzi, V., Gennari, R., & Schreiber, B. C. (2014). Highresolution strontium isotope stratigraphy of the Messinian deep Mediterranean basins: Implications for marginal to central basins correlation. Marine Geology, 349, 113–125.
Sacristán-Horcajada, S., Arribas, M. E., & Mas, R. (2016). Pedogenetic calcretes in early syn-rift alluvial systems (Upper Jurassic, West Cameros Basin), northern Spain. Journal of Sedimentary Research, 86, 268–286.
Sacristán-Horcajada, S., Mas, R., & Arribas, M. E. (2015). Early syn-rift evolution in the W Cameros Basin (Upper Jurassic, NW Iberian Range) Spain. Journal of Sedimentary Research, 85, 794–819.
Salas, R., & Casas, A. (1993). Mesozoic extensional tectonics, stratigraphy and crustal evolution during the Alpine cycle of the eastern Iberian basin. Tectonophysics, 228(1–2), 33–55.
Salas, R., Guimerà, J., Mas, R., Martín-Closas, C., Melendez, A., & Alonso, Á. (2001). Evolution of the Mesozoic central Iberian rift system and its Cainozoic inversion (Iberian chain). Memoires Du Museum National d’Histoire Naturelle, 186, 145–186.
Scasso, R. A., McArthur, J. M., del Río, C. J., Martínez, S. A., & Thirlwall, M. F. (2001). 87Sr/86Sr late Miocene age of fossil molluscs in the “entrerriense” of Valdés península (Chubut, Argentina). Journal of South American Earth Sciences, 14, 319–329.
Schmitz, B., Åberg, G., Werdelin, L., Forey, P., & Bendix-Almgreen, S. (1991). 87Sr/86Sr, Na, F, Sr, and La in skeletal fish debris as a measure of the paleosalinity of fossil-fish habitats. Geological Society of America Bulletin, 103, 786–794.
Sessa, J. A., Ivany, L. C., Schlossnagle, T. H., Samson, S. D., & Schellenberg, S. A. (2012). The fidelity of oxygen and strontium isotope values from shallow shelf settings: Implications for temperature and age reconstructions. Palaeogeography, Palaeoclimatology, Palaeoecology, 342–343, 27–39.
Steuber, T. (2001). Strontium isotope stratigraphy of Turonian-Campanian Gosau-type rudist formations in the Northern Calcareous and Central Alps (Austria and Germany). Cretaceous Research, 22, 429–441.
Steuber, T., & Schlüter, M. (2012). Strontium-isotope stratigraphy of Upper Cretaceous rudist bivalves: biozones, evolutionary patterns and sea-level change calibrated to numerical ages. Earth-Science Reviews, 114, 42–60.
Steuber, T., & Veizer, J. (2002). Phanerozoic record of plate tectonic control of seawater chemistry and carbonate sedimentation. Geology, 30, 1123–1126.
Stueber, A. M., Pushkar, P., & Hetherington, E. A. (1984). A strontium isotopic study of Smackover brines and associated solids, southern Arkansas. Geochimica et Cosmochimica Acta, 48, 1637–1649.
Stueber, A. M., Pushkar, P., & Hetherington, E. A. (1987). A strontium isotopic study of formation waters from the Illionois Basin, U.S.A. Applied Geochemistry, 2, 477–494.
Suarez-Gonzalez, P (2015). Sedimentología y paleogeografía de los sistemas de humedales costeros de la Fm Leza (Cretácico Inferior, Cuenca de Cameros): implicaciones en el origen y desarrollo de los depósitos microbianos asociados. PhD. Thesis, Universidad Complutense de Madrid. 363 pp. ISBN: 978-84-608-3251-5
Suarez-Gonzalez, P., Benito, M. I., Mas, R., Quijada, I. E., & Campos-Soto, S. (2016). Influencia del Keuper y de la estructuración tardivarisca en la arquitectura de las unidades sin-extensionales del borde norte de la Cuenca de Cameros. Geo-Temas, 15, 185–188.
Suarez-Gonzalez, P., Benito, M. I., Quijada, I. E., Mas, R., & Campos-Soto, S. (2019). ‘Trapping and binding’: A review of the factors controlling the development of fossil agglutinated microbialites and their distribution in space and time. Earth-Science Reviews, 194, 182–215.
Suarez-Gonzalez, P., Quijada, I. E., Benito, M. I., & Mas, R. (2013). Eustatic versus tectonic control in an intraplate rift basin (Leza Fm, Cameros Basin): chronostratigraphic and paleogeographic implications for the Aptian of Iberia. Journal of Iberian Geology, 39, 285–312.
Suarez-Gonzalez, P., Quijada, I. E., Benito, M. I., & Mas, R. (2015). Sedimentology of ancient coastal wetlands: Insights from a Cretaceous multifaceted depositional system. Journal of Sedimentary Research, 85, 95–117.
Suarez-Gonzalez, P., Quijada, I.E., Benito, M.I. & Mas, R. (2016b). Do stromatolites need tides to trap ooids? Insights from a Cretaceous system of coastal-wetlands. In B. Tessier & J.Y. Reynaud (Eds.) Contributions to Modern and Ancient Tidal Sedimentology: Proceedings of the Tidalites 2012 Conference (pp. 161–190). International Association of Sedimentologists. John Wiley & Sons.
Suarez-Gonzalez, P., Quijada, I. E., Benito, M. I., Mas, R., Merinero, R., & Riding, R. (2014). Origin and significance of lamination in Lower Cretaceous stromatolites and proposal for a quantitative approach. Sedimentary Geology, 300, 11–27.
Topper, R.P.M., Flecker, R., Meijer, P.Th. & Wortel, M.J.R. (2011). A box model of the Late Miocene Mediterranean Sea: implications from combined 87Sr/86Sr and salinity data. Paleoceanography, 26, PA3223
Topper, R. P. M., & Meijer, PTh. (2013). A modelling perspective on spatial and temporal variations in Messinian evaporite deposits. Marine Geology, 336, 44–60.
Tucker, M., & Wright, V. P. (1990). Carbonate sedimentology. Oxford: Blackwell scientific publications.
Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Buhl, D., Bruhn, F., et al. (1999). 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chemical Geology, 161, 59–88.
Veizer, J., Buhl, D., Diener, A., Ebneth, S., Podlaha, O. G., Bruckschen, P., et al. (1997). Strontium isotope stratigraphy: potential resolution and event correlation. Palaeogeography, Palaeoclimatology, Palaeoecology, 132, 65–77.
Veizer, J., & Compston, W. (1974). 87Sr/86Sr composition of seawater during the Phanerozoic. Geochimica et Cosmochimica Acta, 38, 1461–1484.
Warren, J. K. (2016). Evaporites: A geological compendium. Heidelberg: Springer.
Weedon, G. P., & Jenkyns, H. C. (1999). Cyclostratigraphy and the Early Jurassic timescale: Data from the Belemnite Marls, southern England. Geological Society of America Bulletin, 111, 1823–1840.
Wehmiller, J. F., Burleigh Harris, W., Boutin, B. S., & Farrell, K. M. (2012). Calibration of amino acid racemization (AAR) kinetics in United States mid-Atlantic Coastal Plain Quaternary mollusks using 87Sr/86Sr analyses: Evaluation of kinetic models and estimation of regional Late Pleistocene temperature history. Quaternary Geochronology, 7, 21–36.
Wierzbowski, H., Anckiewicz, R., Pawlak, J., & Rogov, M. A. (2017). Revised Middle-Upper Jurassic strontium isotope stratigraphy. Chemical Geology, 466, 239–255.
Wilde, S. (1990). The Bathonian and Callovian of the Northwest-Iberian Range: Stages of facial and paleogeographical differentiation on an epicontinental platform. Cuadernos de Geología Ibérica, 14, 113–142.
Williamson, T., Henderson, R. A., Price, G. D., & Collerson, K. D. (2012). Strontium-isotope stratigraphy of the Lower Cretaceous of Australia. Cretaceous Research, 36, 24–36.
Zuo, F., Heinhofer, U., Huck, S., Bodin, S., Erbacher, J., & Bai, H. (2018). Coupled δ13C and 87Sr/86Sr chemostratigraphy of Kimmeridgian shoal-water deposits: A new composite record from the Lower Saxony Basin, Germany. Sedimentary Geology, 376, 18–31.
Acknowledgements
This work is dedicated to the memory of Dr. Carmen Galindo, who was always ready to help with a beautiful smile. Thanks to her we have a great Geochronology Laboratory, “right below our feet”. This research was funded by the Spanish projects PGC2018-094034-B-C21 and CGL2014-52670-P, the ‘Sedimentary geology, palaeoclimate and environmental change’ Research Group of the Complutense University of Madrid‒Madrid Community. We are also grateful to José Manuel Fuenlabrada (Chema), Lora Wingate, Aitor Antón, Juan Carlos Salamanca and Beatriz Moral, for their technical support. Authors thanks Dr. Concha Arenas and an anonymous reviewer for their constructive suggestions and comments
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Benito, M.I., Suarez-Gonzalez, P., Quijada, I.E. et al. Constraints of applying strontium isotope stratigraphy in coastal and shallow marine environments: insights from Lower Cretaceous carbonates deposited in an active tectonic setting (N Iberian Basin, Spain). J Iber Geol 47, 151–169 (2021). https://doi.org/10.1007/s41513-020-00142-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s41513-020-00142-z