Skip to main content
Log in

Early Ordovician magmatism in the Sierra de Ancaján, Sierras Pampeanas (Argentina): implications for the early evolution of the proto-Andean margin of Gondwana

Journal of Iberian Geology Aims and scope Submit manuscript

Abstract

The Ancaján pluton is a small-scale (ca. 5.34 km2) elongated igneous body of granodiorite to monzogranite composition that crops out in the Sierra the Ancaján (Eastern Sierras Pampeanas), intruding marbles and metasedimentary rocks of the Ediacaran Ancaján series. New SHRIMP and LA-MC-ICP-MS U–Pb zircon analyses from one granodiorite sample yielded a likely Ordovician crystallization age of ca. 473 Ma. Inherited Cambrian, Neoproterozoic, Mesoproterozoic and Paleoproterozoic ages have also been recorded. The Ancaján granitoids are calc-alkalic, magnesian and slightly peraluminous with medium to high K2O (2.44–3.74 wt%) and high Na2O (4.05–4.51 wt%) contents. These geochemical characteristics are comparable to those of the Ordovician Na-rich (TTG-like) magmatism of the Foreland Famatinian Domain (FFD) in the Sierras de Córdoba. Therefore, the Ancaján pluton could represent the northernmost outcrop of such magmatism. Isotopes data (Sr/Sri = 0.7052–0.7055; εNdi = − 0.7 to − 0.4; TDM = 1.24–1.27 Ga) and inherited zircon ages suggest that the parental magma probably resulted from partial melting of a combined source, mainly formed by older subcontinental mantle with mafic–ultramafic oceanic lithosphere composition, along with recycling/assimilation of continental crust involving Pampean granitoids and/or Ediacaran to Cambrian sedimentary protoliths. This interpretation is coincident with that postulated for the Ordovician Na-rich granitoids from the Sierras de Córdoba. The evidence shown here further implies that metasedimentary rocks of the Sierra de Ancaján were part of the continental upper plate during the Famatinian subduction, and corroborate the previous imbrication of the Ancaján and Puncoviscana series during the early Cambrian Pampean Orogeny.

Resumen

El plutón Ancaján es un cuerpo ígneo elongado, de reducidas dimensiones (ca. 5.34 km2) y composición granodiorítica a monzogranítica que aflora en la Sierra de Ancaján (Sierras Pampeanas Orientales), intruyendo a mármoles y rocas metasedimentarias de la serie Ancaján de edad Ediacarense. Nuevas dataciones de U–Pb en circón realizadas en una muestra granodiorítica mediante SHRIMP y LA-MC-ICP-MS indican una probable edad de cristalización Ordovícica de unos 473 Ma. También se han registrado circones heredados de edades Cámbricas, Neoproterozoicas, Mesoproterozoicas y Paleoproterozoicas. Los granitoides de Ancaján son calcoalcalinos, magnesianos y ligeramente peraluminosos con contenidos medios a altos de K2O (2.44–3.74% en peso) y altos de Na2O (4.05–4.51% en peso). Estas características geoquímicas son comparables a las del magmatismo sódico de tipo TTG Ordovícico del Dominio de Antepaís Famatiniano (FFD) de las Sierras de Córdoba. En consecuencia, el pluton Ancaján podría representar el afloramiento más septentrional de dicho magmatismo. Los datos isotópicos (Sr/Sri = 0.7052–0.7055; εNdi = − 0.7 to − 0.4; TDM = 1.24–1.27 Ga) junto con la presencia de circones heredados, sugieren que el magma parental resultó de la fusión parcial de una fuente combinada, que estaría formada principalmente por un manto subcontinental más viejo con una composición que correspondería a una litosfera oceánica máfica-ultramáfica, junto con el reciclado/asimilación de corteza continental que involucraría granitoides Pampeanos y/o protolitos sedimentarios de edad Ediacarense a Cámbrica. Esta interpretación coincide con la postulada para los granitoides Ordovícicos ricos en Na de las Sierras de Córdoba. Las evidencias presentadas en este trabajo indican que las rocas metasedimentarias que afloran en la Sierra de Ancaján formaron parte de la placa continental superior durante la subducción Famatiniana, corroborando así, la imbricación previa de las series Ancaján y Puncoviscana durante la Orogenia Pampeana de edad Cámbrico temprano.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Finland)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  • Abdel-Rahman, A. M. (1994). Nature of biotites from alkaline, calc-alkaline and peraluminous magmas. Journal of Petrology, 35, 525–541.

    Google Scholar 

  • Aceñolaza, F. G., & Toselli, A. J. (1976). Consideraciones estratigráficas y tectónicas sobre el Paleozoico inferior del Noroeste Argentino. II Congreso Latinoamericano de Geología, Actas 2: 755–764, Caracas.

  • Alasino, P. H., Casquet, C., Galindo, C., Pankhurst, R. J., Rapela, C. W., Dahlquist, J. A., et al. (2020). O-H-Sr-Nd isotope constraints on the origin of the Famatinian magmatic arc, NW Argentina. Geological Magazine. https://doi.org/10.1017/S0016756820000321

    Article  Google Scholar 

  • Alasino, P. H., Casquet, C., Larrovere, M. A., Pankhurst, R. J., Galindo, C., Dahlquist, J. A., et al. (2014). The evolution of a mid-crustal thermal aureole at Cerro Toro, Sierra de Famatina, NW Argentina. Lithos, 190–191, 154–172.

    Google Scholar 

  • Alasino, P. H., Casquet, C., Pankhurst, R. J., Rapela, C. W., Dahlquist, J. A., Galindo, C., et al. (2016). Mafic rocks of the Ordovician Famatinian magmatic arc (NW Argentina): New insights into the mantle contribution. Geological Society of America Bulletin, 128, 1105–1120.

    Google Scholar 

  • Alasino, P. H., Dahlquist, J. A., Pankhurst, R. J., Galindo, C., Casquet, C., Rapela, C. W., et al. (2012). Early Carboniferous sub to mid-alkaline magmatism in the Eastern Sierras Pampeanas. NW Argentina: a record of crustal growth by the incorporation of mantle-derived material in an extensional setting. Gondwana Research, 22, 992–1008.

    Google Scholar 

  • Alasino, P. H., Dahlquist, J. A., Rapela, C. W., Larrovere, M. A., Rocher, S., Morales Cámera, M. M., et al. (2017). Magmatismo Ordovícido en las Sierras Pampeanas de las provincias de La Rioja y Catmarca. Capítulo del Relatorio del XX Congreso Geológico Argentino. Año: 2017; pp. 366–399.

  • Andersen, T. (2002). Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology, 192, 59–79.

    Google Scholar 

  • Baker, F. (1979). Trondhjemite definition, environment and hypothesis or origin. In F. Baker (Ed.), Trondhjemites, dacites, and related rocks (pp. 1–12). New York: Elsevier.

    Google Scholar 

  • Battaglia, A. (1982). Descripción geológica de las Hojas 13f, Río Hondo; 13g Santiago del Estero; 14g, El Alto; 14h, Villa San Martín; 15g, Frías (provincias de Santiago del Estero, Catamarca y Tucumán). Servicio Geológico Nacional, Boletín 186, 80 p.

  • Beder, R. (1928). La Sierra de Guasayán y sus alrededores. Dirección General de Minas, Geología e Hidrogeología, 39, 9–152.

    Google Scholar 

  • Black, L. P., & Gulson, B. L. (1978). The age of the Mud Tank carbonatite, Strangways Range, Northern Territory. Journal of Australian Geology and Geophysics, 3, 227–232.

    Google Scholar 

  • Black, L. P., Kamo, S. L., Allen, C. M., Aleinikoff, J. A., Davis, D. W., Korsch, J. R., et al. (2003). TEMORA 1 a new zircon standard for Phanerozoic U-Pb geochronology. Chemical Geology, 200, 155–170.

    Google Scholar 

  • Blasco, G., Caminos, R. L., Lapido, O., Lizuaín, A., Martinez, H., Nullo, F., et al. (1994). Hoja Geológica 2966-II, San Fernando del Valle de Catamarca, provincias de Catamarca, Santiago del Estero y Tucumán. Programa nacional de cartas geológicas de la República Argentina, 1:250.000, SEGEMAR. 50 p.

  • Casquet, C., Pankhurst, R. J., Rapela, C. W., Galindo, C., Fanning, C. M., Chiaradia, M., et al. (2008). The Mesoproterozoic Maz terrane in the Western Sierras Pampeanas, Argentina, equivalent to the Arequipa-Antofalla block of southern Peru? Implications for West Gondwana margin evolution. Gondwana Research, 13, 163–175.

    Google Scholar 

  • Casquet, C., Dahlquist, J. A., Verdecchia, S. O., Baldo, E. G., Galindo, C., Rapela, C. W., et al. (2018). Review of the Cambrian Pampean orogeny of Argentina; a displaced orogen formerly attached to the Saldania Belt of South Africa? Earth Sciences Reviews, 177, 209–225.

    Google Scholar 

  • Catalano, L. R. (1964). Reconocimiento Geológico-Económico de la Sierra de Ancaján. Estudios de Geología y Minería Económica. Serie Argentina nro 1, 46 p. Buenos Aires, Ministerio de Economía de la Nación. Secretaría de Industria y Minería. Subsecretaría de Minería.

  • Cawood, P. A. (2005). Terra Australis Orogen: Rodinia breakup and development of the Pacific and Iapetus margins of Gondwana during the Neoproterozoic and Paleozoic. Earth-Science Reviews, 69, 249–279.

    Google Scholar 

  • Chang, Z., Vervoort, J. D., McClelland, W. C., & Knaack, C. (2006). U-Pb dating of zircon by LA-ICP-MS. Geochemistry, Geophysics, Geosystems, 7(Q05009), 1–14.

    Google Scholar 

  • Chernicoff, C. J., Zappettini, E. O., Santos, J. O. S., Allchurch, S., & McNaughton, N. J. (2010). The southern segment of the Famatinian magmatic arc, La Pampa Province, Argentina. Gondwana Research, 17, 662–675.

    Google Scholar 

  • Chew, D. M., Kirkland, C. L., Schalteger, U., & Goodhue, R. (2007). Neoproterozoic glaciation in the Proto-Andes: tectonic implications and global correlation. Geology, 35, 1095–1099.

    Google Scholar 

  • Coira, B., Cisterna, C. E., Ulbrich, H. H., & Cordani, U. G. (2016). Extensional Carboniferous magmatism at the western margin of Gondwana: Las Lozas valley, Catamarca, Argentina. Andean Geology, 43, 105–126.

    Google Scholar 

  • Cristofolini, E. A., Otamendi, J. E., Walker, B. A., Jr., Tibaldi, A. M., Armas, P., Bergantz, G. W., et al. (2014). A middle Paleozoic Shear Zone in the Sierra de Valle Fértil, Argentina: Records of a continent-Arc collision in the famatinian margin of Gondwana. Journal of South American Earth Sciences, 56, 170–185.

    Google Scholar 

  • Cumming, G. L., & Richards, J. R. (1975). Ore lead isotope ratios in a continuously changing Earth. Earth and Planetary Science Letters, 28, 155–171.

    Google Scholar 

  • Dahlquist, J. A., & Alasino, P. H. (2005). Hallazgo de granitoides fuertemente peraluminosos en la sierra de Famatina, orógeno Famatiniano. Revista de la Asociación Geológica Argentina, 60, 301–310.

    Google Scholar 

  • Dahlquist, J. A., Alasino, P. H., Basei, M. A. S., Morales Cámera, M. M., Macchioli Grandre, M., & Campos Neto, M. C. (2018). Petrological, geochemical, isotopic, and geochronological constraints for the Late Devonian-Early Carboniferous magmatism in SW Gondwana (27–32°LS): an example of geodynamic switching. International Journal of Earth Sciences, 107, 2575–2603.

    Google Scholar 

  • Dahlquist, J. A., Alasino, P. H., & Bello, C. (2014). Devonian F-rich peraluminous A-type magmatism in the proto-Andean foreland (Sierras Pampeanas, Argentina): geochemical constraints and petrogenesis from the western-central region of the Achala batholith. Mineralogy and Petrology, 108, 391–417.

    Google Scholar 

  • Dahlquist, J. A., Alasino, P. H., Eby, G. N., Galindo, C., & Casquet, C. (2010). Fault controlled Carboniferous A-type magmatism in the proto-Andean forelan (Sierras Pampeanas, Argentina): Geochemical constraints and petrogenesis. Lithos, 115, 65–81.

    Google Scholar 

  • Dahlquist, J. A., Galindo, C., Pankhurst, R. J., Rapela, C. W., Alasino, P. H., Saavedra, J., et al. (2007). Magmatic evolution of the Peñón Rosado granite: petrogenesis of garnet-bearing granitoids. Lithos, 95, 177–207.

    Google Scholar 

  • Dahlquist, J. A., Macchioli Grande, M., Alasino, P. H., Basei, M. A. S., Galindo, C., Moreno, J. A., et al. (2019). New geochronological and isotope data for the Las Chacras—Potrerillos and Renca batholiths: a contribution to the Middle-Upper Devonian magmatism in the pre-Andean foreland (Sierras Pampeanas, Argentina), SW Gondwana. Journal of South American Earth Sciences, 93, 348–363.

    Google Scholar 

  • Dahlquist, J. A., Pankhurst, R. J., Gaschnig, R. M., Rapela, C. W., Casquet, C., Alasino, P. H., et al. (2013). Hf and Nd isotopes in Early Ordovician to Early Carboniferous granites as monitors of crustal growth in the Proto-Andean margin of Gondwana. Gondwana Research, 23, 1617–1630.

    Google Scholar 

  • Dahlquist, J. A., Pankhurst, R. J., Rapela, C. W., Galindo, C., Alasino, P., Fanning, C. M., et al. (2008). New SHRIMP U-Pb data from the Famatina complex: constraining Early-Mid Ordovician Famatinian magmatism in the Sierras Pampeanas, Argentina. Geologica Acta, 6, 319–333.

    Google Scholar 

  • Dahlquist, J. A., Rapela, C. W., Pankhurst, R. J., Fanning, C. M., Vervoort, J. D., Hart, G., et al. (2012). Age and magmatic evolution of the Famatinian granitic rocks of Sierra de Ancasti, Sierras Pampeanas, NW Argentina. Journal of South American Earth Sciences, 34, 10–25.

    Google Scholar 

  • Demartis, M., Jung, S., Berndt, J., Aragón, E., Sato, A. M., Radice, S., et al. (2017). Famatinian inner arac: Petrographical observationsand geochronological constraints on pegmatites and leucogranites of the Comechingones pegmatitic field (Sierras de Córdoba, Argentina). Journal of South American Earth Sciences, 79, 239–253.

    Google Scholar 

  • DePaolo, D. J., Linn, A. M., & Schubert, G. (1991). The continental crustal age distribution: Methods of determining mantle separation ages from Sm–Nd isotopic data and application to the Southwestern United States. Journal of Geophysical Research, 96, 2071–2088.

    Google Scholar 

  • D'Eramo, F., Pinotti, L., Bonalumi, A., Sfragulla, J., Demartis, M., Coniglio, J., et al. (2014). El magmatismo Ordovícico en las Sierras Pampeanas de Córdoba. In: Martino, R. D., Guereschi, A. B. (Eds.), Geología y Recursos Naturales de la provincia de Córdoba. 19° Congreso Geológico Argentino, Relatorio, pp. 233–254.

  • Dickin, A. P. (2005). U-series dating. Radiogenic isotope geology (pp. 324–352). Cambridge: Cambridge University Press.

    Google Scholar 

  • Ducea, M. N., Otamendi, J. E., Bergantz, G. W., Jianu, D., & Petrescu, L. (2015). The origin and petrologic evolution of the Ordovician Famatinian-Puna arc. In: DeCelles, P. G., Ducea, M. N., Carrapa, B. & Kapp, P. A. (Eds.) Geodynamics of a Cordilleran Orogenic System: The Central Andes of Argentina and Northern Chile. Geological Society of America Memoir, 212, 125–138.

  • Ducea, M. N., Otamendi, J. E., Bergantz, G., Stair, K. M., Valencia, V. A., & Gehrels, G. E. (2010). Timing constraints on building an intermediate plutonic arc crustal section: U- Pb Zircon Geochronology of the Sierra Valle Fértil-la Huerta, Famatinian Arc. Tectonics, 29, 1–30.

    Google Scholar 

  • Evans, B. W., & Vance, J. A. (1987). Epidote phenocrysts in dacitic dikes, Boulder County, Colorado. Contributions to Mineralogy and Petrology, 96, 178–185.

    Google Scholar 

  • Frost, B. R., Barnes, C. G., Collins, W. J., Arculus, R. J., Ellis, S. J., & Frost, C. D. (2001). A geochemical classification for granitic rocks. Journal of Petrology, 42, 2033–2048.

    Google Scholar 

  • García-Ramírez, C. A., Rey-León, V., & Valencia, V. (2017). Ortoneises en la Franja Silos-Babega, Macizo de Santander, Colombia: evidencias de la orogenia famatiniana en los Andes del norte. Andean Geology, 44, 307–327.

    Google Scholar 

  • Grosse, P., Bellos, L. I., de los Hoyos, C. R., Larrovere, M. A., Rossi, J. N., & Toselli, A. J. (2011). Across-arc variation of the Famatinian magmatic arc (NW Argentina) exemplified by I, S- and transitional I/S-type Early Ordovician granitoids of the Sierra de Velasco. Journal of South American Earth Sciences, 32, 110–126.

    Google Scholar 

  • Hongn, F., Tubía, J. M., Esteban, J. J., Aranguren, A., Vegas, N., Sergeev, S., et al. (2014). The Sierra de Cachi (Salta, NW Argentina): Geological evidence about a Famatinian retro-arc at mid crustal levels. Journal of Iberian Geology, 40, 225–240.

    Google Scholar 

  • Iannizzotto, N. F., Rapela, C. W., Baldo, E. G., Galindo, C., & Fanning, C. M. (2013). The Sierra Norte-Ambargasta Batholith: Cambrian magmatism formed in a transpressional belt along the western edge of the Río de la Plata Cratón. Journal of South American Earth Sciences, 42, 127–142.

    Google Scholar 

  • Jackson, S. E., Pearson, N. J., Griffin, W. L., & Belousova, E. A. (2004). The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chemical Geology, 211, 47–69.

    Google Scholar 

  • Jordan, T. E., & Allmendinger, R. W. (1986). The Sierras Pampeanas of Argentina: A modern analogue of Rocky mountain foreland deformation. American Journal of Sciece, 286, 737–764.

    Google Scholar 

  • Kosler, J., & Sylvester, P. J. (2003). Present trends and the future of zircon in geochronology: laser ablation ICPMS. In: Hanchar, J.M., Hoskin, P.W.O. (Eds.), Zircon: Reviews in Mineralogy and Geochemistry, 53, 243–276.

  • Lagorio, S. L., Vizán, H., & Geuna, S. E. (2016). Early cretaceous volcanism in central and eastern Argentina during gondwana break-up (p. 141). Berlin: Springer.

    Google Scholar 

  • Lucassen, F., & Franz, G. (2005). The early paleozoic orogen in the central Andes: a non- collisional orogen comparable to the cenozoic high plateau? In: Vaughan, A. P. M., Leat, P. T. & Pankhurst, R. J. (Eds.) Terrane Processes at the Margins of Gondwana. Geological Society of London, Special Publications, 246, 257–373.

  • Ludwig, K.R. (2008). Isoplot/EX 4.15: a geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, 4, 2455 Ridge Road, Berkeley CA 94709, USA.

  • Marques, L. S., Dupre, B., & Piccirillo, E. M. (1999). Mantle source compositions of the parana Magmatic Province (southern Brazil): evidence from trace element and Sr-Nd-Pb isotope geochemistry. Journal of Geodynamics, 28, 439–458.

    Google Scholar 

  • McDonough, W. F., & Sun, S. S. (1995). The composition of the Earth. Chemical Geology, 120, 223–253.

    Google Scholar 

  • Morales Cámera, M. M., Dahlquist, J. A., Basei, M. A. S., Galindo, C., da Costa Campos Neto, M., & Facetti, N. (2017). F-rich strongly peraluminous A-type magmatism in the pre-Andean Foreland Sierras Pampeanas, Argentina: geochemical, geochronological, isotopic constraints and petrogenesis. Lithos, 277, 210–227.

    Google Scholar 

  • Mulcahy, S. R., Roeske, S. M., McClelland, W. C., Jourdan, F., Iriondo, A., Renne, P. R., et al. (2011). Structural evolution of a composite middle to lower crustal section: The Sierra de Pie de Palo, Northwest Argentina. Tectonics, 30, 1–24.

    Google Scholar 

  • Murra, J. A., Baldo, E. G., Galindo, C., Casquet, C., Pankhurst, R. J., Rapela, C. W., et al. (2011). Sr, C and O isotope composition of marbles from the Sierra de Ancasti, Eastern Sierras Pampeanas, Argentina: age and constraints for the Neoproterozoic-Lower Paleozoic evolution of the proto-Gondwana margin. Geologica Acta, 9, 79–92.

    Google Scholar 

  • Murra, J. A., Casquet, C., Locati, F., Galindo, C., Baldo, E. G., Pankhurst, R. J., et al. (2016). Isotope (Sr, C) and U-Pb SHRIMP zircon geochronology of marble-bearing sedimentary series in the Eastern Sierras Pampeanas, Argentina. Constraining the SW Gondwana margin in Ediacaran to early Cambrian times. Precambrian Research, 281, 602–617.

    Google Scholar 

  • Otamendi, J. E., Cristofolini, E. A., Morosini, A., Armas, P., Tibaldi, A. M., & Camilletti, G. C. (2020). The geodynamic history of the Famatinian arc, Argentina: A record of exposed geology over the type section (latitudes 27°–33° south). Journal of South American Earth Sciences, 100, 102558.

    Google Scholar 

  • Otamendi, J. E., Ducea, M. N., & Bergantz, G. W. (2012). Geological, petrological and geochemical evidence for progressive construction of an arc crustal section, Sierra de Valle Fertil, Famatinian Arc, Argentina. Journal of Petrology, 53, 761–800.

    Google Scholar 

  • Otamendi, J. E., Ducea, M. N., Cristofolini, E. A., Tibaldi, A. M., Camilletti, G. C., & Bergantz, G. W. (2017). U-Pb ages and Hf isotope compositions of zircons in plutonic rocks from the central Famatinian arc, Argentina. Journal of South American Earth Sciences, 76, 412–426.

    Google Scholar 

  • Pankhurst, R. J., & Rapela, C. W. (1998). The proto-Andean margin of Gondwana: an introduction. In: Pankhurst, R. J. & Rapela, C. W. (eds) The Proto-Andean Margin of Gondwana. Geological Society, London, Special Publications, 142, 1–9.

  • Pankhurst, R. J., Rapela, C. W., & Fanning, C. M. (2000). Age and origin of coeval TTG, I- and S-type granites in the Famatinian belt of NW Argentina. Earth and Environmental Science Transactions of The Royal Society of Edinburgh, 91, 151–168.

    Google Scholar 

  • Pankhurst, R. J., Rapela, C. W., Fanning, C. M., & Márquez, M. (2006). Gondwanide continental collision and the origin of Patagonia. Earth-Science Reviews, 76, 235–257.

    Google Scholar 

  • Pankhurst, R. J., Rapela, C. W., Lopez De Luchi, M. G., Rapalini, A. E., Fanning, C. M., & Galindo, C. (2014). The Gondwana connections of northern Patagonia. Journal of the Geological Society, 171, 313–328.

    Google Scholar 

  • Pankhurst, R. J., Rapela, C. W., Saavedra, J., Baldo, E., Dahlquist, J., Pascua, I., et al. (1998). The famatinian magmatic arc in the central sierras pampeanas: an early to mid-ordovician continental arc on the gondwana margin. In R. J. Pankhurst & C. W. Rapela (Eds.), The proto-andean margin of gondwana (Vol. 142, pp. 343–367). London Special Publications: Geological Society.

    Google Scholar 

  • Piccirillo, E. M., & Melfi, A. J. (1988). The Mesozoic Flood Volcanism from the Paraná Basin (Brazil): petrogenetic and geophysical aspects (p. 600). San Pablo: Universidad de São Paulo.

    Google Scholar 

  • Ramacciotti, C. D., Baldo, E. G., & Casquet, C. (2015). U-Pb SHRIMP detrital zircon ages from the Neoproterozoic Difunta Correa Metasedimentary Sequence (Western Sierras Pampeanas, Argentina): Provenance and paleogeographic implications. Precambrian Research, 270, 39–49.

    Google Scholar 

  • Ramos, V. A., et al. (2018). The famatinian orogen along the protomargin of western Gondwana: Evidence for a nearly continuous ordovician magmatic arc between Venezuela and Argentina. In A. Folguera (Ed.), The evolution of the chilean-Argentinean andes (pp. 133–161). Berlin: Springer Earth System Sciences.

    Google Scholar 

  • Rapela, C. W., Pankhurst, R. J., Casquet, C., Baldo, E., Galindo, C., Fanning, C. M., et al. (2010). The Western Sierras Pampeanas: protracted Grenville-age history (1330–1030 Ma) of intra-oceanic arcs, subduction–accretion at continental-edge and AMCG intraplate magmatism. Journal of South American Earth Sciences, 29, 105–127.

    Google Scholar 

  • Rapela, C. W., Pankhurst, R. J., Casquet, C., Baldo, E., Saavedra, J., Galindo, C., et al. (1998). The Pampean orogeny of the south proto-Andes: evidence for Cambrian continental collision in the Sierras de Cordoba. In R. J. Pankhurst & C. W. Rapela (Eds.), The Proto-andean margin of Gondwana (Vol. 142, pp. 181–217). London, Special Publications: Geological Society.

    Google Scholar 

  • Rapela, C. W., Pankhurst, R. J., Casquet, C., Dahlquist, J. A., Fanning, C. M., Baldo, E. G., et al. (2018). A review of the Famatinian Ordovician magmatism in southern South America: evidence of lithosphere reworking and continental subduction in the early proto-Andean margin of Gondwana. Earth Science Reviews, 187, 259–285.

    Google Scholar 

  • Rapela, C. W., Pankhurst, R. J., Casquet, C., Fanning, C. M., Baldo, E., González-Casado, J., et al. (2007). The Río de la Plata craton and the assembly of SW Gondwana. Earth-Science Reviews, 83, 49–82.

    Google Scholar 

  • Rapela, C. W., Verdecchia, S. O., Casquet, C., Pankhurst, R. J., Baldo, E. G., Galindo, C., et al. (2016). Identifying Laurentian and SW Gondwana sources in the Neoproterozoic to Early Paleozoic metasedimentary rocks of the Sierras Pampeanas: Paleogeographic and tectonic implications. Gondwana Research, 32, 193–212.

    Google Scholar 

  • Sato, K., Basei, M. A. S., Sproesser, W. M., & Siga Jr, O. (2012). The application of U–Pb geochronology to zircon and titanite by laser ablation—ICP–MS. In The 8th International Conference on the Analysis of Geological and Environmental Materials, Annals, Búzios.

  • Sato, K., Santosh, M., Tsunogae, T., Chetty, T. R. K., & Hirata, T. (2011). Subduction accretion-collision history along the Gondwana suture in southern India: A laser ablation ICP-MS study of zircon chronology. Journal of Asian Earth Sciences, 40, 162–171.

    Google Scholar 

  • Semenov, I., & Weimberg, R. F. (2017). A major mid-crustal decollement of the Paleozoic convergent margin of western Gondwana: The Guacha Corral shear zone, Argentina. Journal of Structural Geology, 103, 75–99.

    Google Scholar 

  • Siegesmund, S., Steenken, A., López de Luchi, M. G., Wemmer, K., Hoffmann, A., & Mosch, S. (2004). The Las Chacras-Potrerillos batholith (Pampean Ranges, Argentina): Structural evidence, emplacement and timing of the intrusion. International Journal of Earth Sciences, 93, 23–43.

    Google Scholar 

  • Sola, A. M., Becchio, R. A., & Pimentel, M. M. (2013). Petrogenesis of migmatites and leucogranites from Sierra de Molinos, Salta, Northwest Argentina: A petrologic and geochemical study. Lithos, 177, 470–491.

    Google Scholar 

  • Suzaño, N. O., Sola, A. M., Elortegui Palacios, J., Becchio, R. A., Ortiz, A., Nieves, A. A., et al. (2017). Magmatismo plutónico del Paleozoico inferior de Salta y Jujuy. In: Muruaga, C.M., Grosse, P. (Eds.), Ciencias de la Tierra y Recursos Naturales del NOA. Relatorio del XX Congreso Geológico Argentino, San Miguel de Tucumán, pp. 323–351

  • Tischendorf, G., Förster, H.-J., Gottesmann, B., & Rieder, M. (2007). True and brittle micas: composition and solid-solution series. Mineralogical Magazine, 71, 285–320.

    Google Scholar 

  • Tischendorf, G., Rieder, M., Förster, H.-J., Gottesmann, B., & Guidotti, C. V. (2004). A new graphical presentation and subdivision of potassium micas. Mineralogical Magazine, 68, 649–667.

    Google Scholar 

  • Van der Lelij, R., Spikins, R., Ulianov, A., Chiaradia, M., & Mora, A. (2016). Palaeozoic to Early Jurassic history of the northwestern corner of Gondwana, and implications for the evolution of the Iapetus, Rheic and Pacific Oceans. Gondwana Research, 31, 271–294.

    Google Scholar 

  • von Gosen, W., McClelland, W. C., Loske, W., Martínez, J. C., & Prozzi, C. (2014). Geochronology of igneous rocks in the Sierra Norte de Córdoba (Argentina): Implications for the Pampean evolution at the western Gondwana margin. Lithosphere, 6, 277–300.

    Google Scholar 

  • Vyhnal, C. R., McSween, H. Y., & Speer, J. A. (1991). Hornblende chemistry in southern Appalachian granitoids: Implications for aluminium hornblende thermobarometry and magmatic epidote stability. American Mineralogist, 76, 176–188.

    Google Scholar 

  • Whitney, D. L., & Evans, B. W. (2010). Abbreviations for names of rock-forming minerals. American Mineralogist, 95, 185–187.

    Google Scholar 

  • Williams, I. S., & Claesson, S. (1987). Isotopic evidence for the Precambrian prove-nance and Caledonian metamorphism of high grade paragneisses from the SeveNappes Scandinavian Caledonides. II: Ion microprobe zircon U–Th–Pb. Contributions to Mineralogy and Petrology, 97, 205–217.

    Google Scholar 

  • Willner, A. P., Lottner, U. S., & Miller, H. (1987). Early Paleozoic development in the NW Argentine basement of the Andes and its implication for geodynamic reconstruction. American Geophysical Union, Actas (Vol. 40, pp. 8–9). Washington: Estados Unidos.

    Google Scholar 

Download references

Acknowledgements

We acknowledge Argentine Grants FONCyT PICT-2016-0843 and PICT-2017-0619, CONICET PIP 2015-2018 11220150100901CO and PIP0178, SECyT-UNC-2018-Consolidar and PUE-2016-CONICET, and Grant CGL2016-76439-P from the Spanish Mineco (Ministery of Economy). U-Pb zircon data using LA-MC-ICP-MS were collected by JAD during a stay developed in the Geosciences Institute of the São Paulo University supported by the Grant FAPESP 2018/06837-3. We thank Pilar Montero for helping us with the interpretation of the SHRIMP data. We also thank Aitor Cambeses and an anonymous reviewer whose comments greatly improved the quality of this article, and Ricardo Arenas for his efficient and helpful editorial handling. This contribution is in memory of our beloved friend Carmen Galindo, who passed away in 2019 and is co-author of the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priscila S. Zandomeni.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 98 kb)

Supplementary file2 (XLSX 55 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zandomeni, P.S., Verdecchia, S.O., Baldo, E.G. et al. Early Ordovician magmatism in the Sierra de Ancaján, Sierras Pampeanas (Argentina): implications for the early evolution of the proto-Andean margin of Gondwana. J Iber Geol 47, 39–63 (2021). https://doi.org/10.1007/s41513-020-00141-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41513-020-00141-0

Keywords

Palabras clave

Navigation