Skip to main content
Log in

Sauropodomorph skeletal mounts as scientific devices for testing hypotheses

  • Research Paper
  • Published:
Journal of Iberian Geology Aims and scope Submit manuscript

Abstract

Fossil skeletal mounts are more than popular attractions at paleontological exhibitions. Thorough History they have proven, when properly mounted, to be great devices for evaluating paleobiological hypotheses otherwise untestable. Nevertheless, mounting skeletons based on preconceived notions or looking for spectacularity has also contributed to spark a lot of scientific debate for decades. This work reviews some historical and recent cases on how skeletal mounting of sauropodomorph dinosaurs, physical or virtual, has resulted as hypothesis testing device or as a vehicle for false hypotheses to spread. Skeletal mounts can be valid hypothesis testing devices when following strict rigorous and repeatable protocols. Some criteria for evaluating previously existing mounts or executing new ones are proposed.

Resumen

Los montajes de esqueletos fósiles son más que atracciones populares en exhibiciones de paleontología. A lo largo de la historia han demostrado ser, debidamente ejecutados, herramientas para evaluar hipótesis en paleobiología que de otra manera no sería posible. Sin embargo, su ejecución basada en nociones preconcebidas o el buscar espectacularidad también ha contribuido a generar mucho debate dentro del mundo científico durante décadas. En este trabajo se analizan algunos casos históricos y recientes de cómo el montaje de esqueletos de dinosaurios sauropodomorfos, físicos o virtuales, ha resultado ser tanto una herramienta de refutación útil como una forma de expandir ideas erróneas. El montaje de esqueletos fósiles puede ser una herramienta científica válida siguiendo protocolos rigurosos y repetibles. Se proponen criterios para ejecutarlos, así como para evaluar la validez de montajes previos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bakker, R. T. (1968). The superiority of dinosaurs. Discovery,3, 11–22.

    Google Scholar 

  • Bakker, R. T. (1971). Ecology of the brontosaurs. Nature,229(5871), 172–174.

    Google Scholar 

  • Bakker, R. T. (1975). Dinosaur renaissance. Scientific American,232, 58–79. https://doi.org/10.1038/scientificamerican0475-58.

    Article  Google Scholar 

  • Bakker, R. T. (1986). The dinosaur heresies: New theories unlocking the mystery of the dinosaurs and their extinction. New York: Citadel Press.

    Google Scholar 

  • Ballou, W. H. (1897). Strange creatures of the past: Giant saurians of the reptilian age. Century Magazine,55(1), 15.

    Google Scholar 

  • Boyd, J. P. (1958). The Megalonyx, the Megatherium, and Thomas Jefferson’s Lapse of memory. Proceedings of the American Philosophical Society,102(5), 420–435.

    Google Scholar 

  • Bru, J. B. (1796). Descripción del esqueleto en particular, según las observaciones hechas al tiempo de armarle y colocarle en este Real Gabinete. In Descripción del esqueleto de un quadrupedo muy corpulento y raro, que se conserva en el Real Gabinete de Historia Natural de Madrid (pp. 1–16).

  • Carpenter, K., Madsen, J., & Lewis, A. (1994). Mounting of fossil vertebrate skeletons. In P. Leiggi & P. May (Eds.), Vertebrate paleontological techniques (Vol. 1, pp. 285–322). Cambridge: Cambridge University Press.

    Google Scholar 

  • Chapman, R. E., Andersen, A. F., & Sabo, S. J. (1999). Construction of the virtual Triceratops: procedures, results, and potentials. Journal of Vertebrate Paleontology,19(S3), 37A.

    Google Scholar 

  • Christian, A., Peng, G., Sekiya, T., Ye, Y., Wulf, M. G., & Steuer, T. (2013). Biomechanical reconstructions and selective advantages of neck poses and feeding strategies of Sauropods with the example of Mamenchisaurus youngi. PLoS One,8(10), 1–8. https://doi.org/10.1371/journal.pone.0071172.

    Article  Google Scholar 

  • Conniff, R. (2016). House of lost worlds: Dinosaurs, dynasties & the story of life on earth. New Haven: Yale University Press.

    Google Scholar 

  • Coombs, W. P. (1975). Sauropod habits and habitats. Palaeogeography, Palaeoclimatology, Palaeoecology,17(1), 1–33. https://doi.org/10.1016/0031-0182(75)90027-9.

    Article  Google Scholar 

  • Cope, E. D. (1877). On a gigantic saurian form the Dakota Epoch Of Colorado. Paleontological Bulletin,26, 5–10.

    Google Scholar 

  • Cope, E. D. (1878a). A new species of Amphicoelias. American Naturalist,13, 563–564.

    Google Scholar 

  • Cope, E. D. (1878b). On the vertebrata of the Dakota Epoch of Colorado. Proceedings of American Philosophical Society,17(28), 233–247.

    Google Scholar 

  • Cuvier, G. (1804). Sur le Megatherium. Annales Du Museum National d’Histoire Naturelle,58, 41.

    Google Scholar 

  • Dingus, L. (1995). Next of kin: great fossils at the American museum of natural history. New York: Rizzoli International Publications.

    Google Scholar 

  • Dzemski, G., & Christian, A. (2007). Flexibility along the neck of the ostrich (Struthio camelus) and consequences for the reconstruction of dinosaurs with extreme neck length. Journal of Morphology,268, 701–714. https://doi.org/10.1002/jmor.

    Article  Google Scholar 

  • Evers, S. W., Rauhut, O. W. M., Milner, A. C., McFeeters, B., & Allain, R. (2015). A reappraisal of the morphology and systematic position of the theropod dinosaur Sigilmassasaurus from the “middle” Cretaceous of Morocco. PeerJ,3, e1323. https://doi.org/10.7717/peerj.1323.

    Article  Google Scholar 

  • Galton, P. M., Van Heerden, J., & Yates, A. M. (2005). Postcranial anatomy of referred specimens of Melanorosaurus. In K. Carpenter & V. Tidwell (Eds.), Thunder-lizards: The Sauropodomorph Dinosaurs (pp. 1–37). Bloomington: Indiana University Press.

    Google Scholar 

  • Garriga, J. (1796). Descripción del esqueleto de un quadrupedo muy corpulento y raro, que se conserva en el Real Gabinete de Historia Natural de Madrid.

  • Gilmore, C. W. (1925). A nearly complete articulated skeleton of Camarasaurus, a saurischian dinosaur from the Dinosaur National Monument, Utah. Memoirs of the Carnegie Museum,10(3), 347–384.

    Google Scholar 

  • Gilmore, C. W. (1932). On a newly mounted skeleton of Diplodocus in the United States National Museum. Proceedings of the United States National Museum,81, 1–21. https://doi.org/10.5479/si.00963801.81-2941.1.

    Article  Google Scholar 

  • Hatcher, J. B. (1901). Diplodocus (Marsh): Its osteology, taxonomy and probable habits, with a restoration of the skeleton. Memoirs of the Carnegie Museum,1(1), 1–63.

    Google Scholar 

  • Hay, O. P. (1908). On the habits and pose of the sauropod dinosaurs, especially of Diplodocus. The American Naturalist,42(502), 672–681.

    Google Scholar 

  • Hay, O. P. (1909). On the restoration of skeletons of fossil vertebrates. Science,30(759), 93–95. https://doi.org/10.1126/science.30.759.93-a.

    Article  Google Scholar 

  • Hay, O. P. (1910). On the manner of locomotion of the dinosaurs, especially Diplodocus, with remarks on the origin of the birds. Procceedings of the Washington Academy of Sciences,58, 17.

    Google Scholar 

  • Holland, W. J. (1905). The presentation of a reproduction of Diplodocus carnegii to the trustees of the British Museum. Annals of the Carnegie Museum,3(3), 442–452.

    Google Scholar 

  • Holland, W. J. (1906). The osteology of Diplodocus Marsh. Memoirs of the Carnegie Museum,2(6), 223–278.

    Google Scholar 

  • Holland, W. J. (1910). A review of some recent criticisms of the restorations of sauropod dinosaurs existing in the museums of the United States, with special reference to that of Diplodocus carnegii in the carnegie museum. The American Naturalist,44, 259–283.

    Google Scholar 

  • Holliday, C. M., Ridgely, R. C., Sedlmayr, J. C., & Witmer, L. M. (2010). Cartilaginous epiphyses in extant archosaurs and their implications for reconstructing limb function in dinosaurs. PLoS One,5(9), e13120. https://doi.org/10.1371/journal.pone.0013120.

    Article  Google Scholar 

  • Horner, J. R., & Lessem, D. (1993). The complete T. rex. New York: Simon & Schuster.

    Google Scholar 

  • Ibrahim, N., Sereno, P. C., Sasso, C. D., Maganuco, S., Fabbri, M., Martill, D. M., et al. (2014). Semiaquatic adaptations in a giant predatory dinosaur. Science,345(6204), 1613–1616. https://doi.org/10.1126/science.1258750.

    Article  Google Scholar 

  • Janensch, W. (1950). Die Skelettrekonstruktion von Brachiosaurus brancai. Palaeontographica,1, 95–103.

    Google Scholar 

  • Johnson, R. E., & Ostrom, J. H. (1995). The forelimb of Torosaurus and an analysis of the posture and gait of ceratopsian dinosaurs. In J. Thomason (Ed.), Functional morphology in vertebrate paleontology (pp. 205–218). Cambridge: Cambridge University Press.

    Google Scholar 

  • Lacovara, K. J., Lamanna, M. C., Ibiricu, L. M., Poole, J. C., Schroeter, E. R., Ullmann, P. V., et al. (2014). A Gigantic, exceptionally complete titanosaurian sauropod dinosaur from southern patagonia, Argentina. Scientific Reports,4, 6196. https://doi.org/10.1038/srep06196.

    Article  Google Scholar 

  • Langer, M. C., Abdala, F., Richter, M., & Benton, M. J. (1999). A sauropodomorph dinosaur from the Upper Triassic (Carnian) of southern Brazil. Comptes Rendus de l’Academie de Sciences - Serie IIa: Sciences de La Terre et Des Planetes,329, 511–517. https://doi.org/10.1016/S1251-8050(00)80025-7.

    Article  Google Scholar 

  • Leidy, J. (1865). Cretaceous reptiles of the United States. Smithshonian Contribution to Knowledge, 14.

  • López Piñero, J. M. (1988). Juan Bautista Bru (1740-1799) and the description of the genus Megatherium. Journal of the History of Biology,21(1), 147–163. https://doi.org/10.1007/BF00125797.

    Article  Google Scholar 

  • Mallison, H. (2007). Virtual dinosaurs: developing computer aided design and computer aided engineering modeling methods for vertebrate paleontology. Tübingen: Eberhard-Karls-Universität Tübingen.

    Google Scholar 

  • Mallison, H. (2010a). The digital Plateosaurus I: Body mass, mass distribution and posture assessed using cad and cae on a digitally mounted complete skeleton. Palaeontologia Electronica, 2(2), 1–26. Retrieved from http://www.uv.es/~pardomv/pe/2010_2/198/abstracts.html.

  • Mallison, H. (2010b). CAD assessment of the posture and range of motion of Kentrosaurus aethiopicus Hennig 1915. Swiss Journal of Geosciences,103(2), 211–233. https://doi.org/10.1007/s00015-010-0024-2.

    Article  Google Scholar 

  • Mallison, H. (2010c). The digital Plateosaurus II: an assessment of the range of motion of the limbs and vertebral column and of previous reconstructions using a digital skeletal mount. Acta Palaeontologica Polonica,55(3), 433–458. https://doi.org/10.4202/app.2009.0075.

    Article  Google Scholar 

  • Mallison, H., & Wings, O. (2014). Photogrammetry in paleontology—a practical guide. Journal of Paleontological Techniques,12, 1–31.

    Google Scholar 

  • Marsh, O. C. (1883). Principal characters of American Jurassic dinosaurs; Part VI, restoration of Brontosaurus. American Journal of Science,26, 81–85. https://doi.org/10.2475/ajs.s3-26.152.81.

    Article  Google Scholar 

  • Matthew, W. D. (1915). Dinosaurs, with special reference to the American Museum collections. New York: American Museum of Natural History.

    Google Scholar 

  • McIntosh, J. S., & Williams, M. E. (1988). A new species of sauropod dinosaur, Haplocanthosaurus delfsi sp. nov., from the Upper Jurassic Morrison Fm. of Colorado. Kirtlandia,43, 3–26.

    Google Scholar 

  • Norman, D. B. (1980). On the ornithischian dinosaur Iguanodon bernissartensis from the Lower Cretaceous of Bernissart (Belgium). Institut Royal Des Sciences Naturelles de Belgique Memoire,178, 1–103.

    Google Scholar 

  • Osborn, H. F. (1899). A skeleton of Diplodocus, recently mounted in the American Museum. Science,10(259), 870–874.

    Google Scholar 

  • Paul, G. S. (2019). Determining the largest known land animal: a critical comparison of differing methods for restoring the volume and mass of extinct animals. Annals of Carnegie Museum,85(4), 335–358.

    Google Scholar 

  • Pérez García, A., & Sánchez Chillón, B. (2009). Historia de Diplodocus carnegii del MNCN: primer Esqueleto de dinosaurio Montado en la Península ibérica. Revista Espanola de Paleontologia,24(2), 133–148.

    Google Scholar 

  • Phillips, J. (1871). Geology of Oxford and the valley of the Thames. Oxford: Clarendon Press.

    Google Scholar 

  • Rea, T. (2004). Bone wars: the excavation and celebrity of Andrew Carnegie’s dinosaur. Pittsburgh: University of Pittsburgh Press.

    Google Scholar 

  • Riggs, E. S. (1903). Brachiosaurus altithorax, the largest known dinosaur. American Journal of Science,15(88), 299–306.

    Google Scholar 

  • Riggs, E. S. (1904). Structure and relationships of opisthocoelian dinosaurs. Part II. The Brachiosauridae. Publications of the Field Columbian Museum, Geology,1, 229–256.

    Google Scholar 

  • Senter, P., & Robins, J. H. (2005). Range of motion in the forelimb of the theropod dinosaur Acrocanthosaurus atokensis, and implications for predatory behaviour. Journal of Zoology,266, 307–318. https://doi.org/10.1017/s0952836905006989.

    Article  Google Scholar 

  • Senter, P. J., & Sullivan, C. (2019). Forelimbs of the theropod dinosaur Dilophosaurus wetherilli: Range of motion, influence of paleopathology and soft tissues, and description of a distal carpal bone. Palaeontologia Electronica. https://doi.org/10.26879/900.

    Article  Google Scholar 

  • Sereno, P. C. (1999). The evolution of dinosaurs. Science,284(June), 2137–2147.

    Google Scholar 

  • Simpson, G. G. (1942). The beginnings of vertebrate paleontology in North America. Proceedings of the American Philosophical Society,86(1), 130–188.

    Google Scholar 

  • Stevens, K. A. (2002). DinoMorph: parametric modeling of skeletal structures. Senckenbergiana Lethaea,82(1), 23–34. https://doi.org/10.1007/BF03043770.

    Article  Google Scholar 

  • Stevens, K. A. (2013). The articulation of sauropod necks: methodology and mythology. PLoS One,8(10), 1–27. https://doi.org/10.1371/journal.pone.0078572.

    Article  Google Scholar 

  • Stevens, K. A., & Parrish, M. J. (1999). Neck posture and feeding habits of two Jurassic sauropod dinosaurs. Science,284, 798–800. https://doi.org/10.1126/science.284.5415.798.

    Article  Google Scholar 

  • Taylor, M. P. (2010). Sauropod dinosaur research: a historical review. Geological Society London Special Publications,343(1), 361–386.

    Google Scholar 

  • Taylor, M. P. (2015). Almost all known sauropod necks are incomplete and distorted. PeerJ. https://doi.org/10.7287/peerj.preprints.1418v1.

    Article  Google Scholar 

  • Taylor, M. P., Wedel, M. J., & Naish, D. (2009). Head and neck posture in sauropod dinosaurs inferred from extant animals. Acta Palaeontologica Polonica,54(2), 213–220. https://doi.org/10.4202/app.2009.0007.

    Article  Google Scholar 

  • Tornier, G. (1909). Wie war der Diplodocus carnegii wirklich gebaut? Sitzungsberichte Der Gesellschaft Naturforschender Freunde Zu Berlin,4, 193–209.

    Google Scholar 

  • Tschopp, E., Mateus, O., & Benson, R. B. J. (2015). A specimen-level phylogenetic analysis and taxonomic revision of Diplodocidae (Dinosauria, Sauropoda). PeerJ,3(e857), 1–298. https://doi.org/10.7717/peerj.857.

    Article  Google Scholar 

  • Tschopp, E., Russo, J., & Dzemski, G. (2013). Retrodeformation as a test for the validity of phylogenetic characters: An example from diplodocid sauropod vertebrae. Paleontologia Electronica,16, 1–23.

    Google Scholar 

  • Upchurch, P., Barrett, P. M., & Dodson, P. (2004). Sauropoda. In D. B. Weishampel, P. Dodson, & H. Osmólska (Eds.), The dinosauria (2nd ed., pp. 259–322). Berkeley: University of California Press.

    Google Scholar 

  • Vidal, D., & Díaz, V. D. (2017). Reconstructing hypothetical sauropod tails by means of 3D digitization: Lirainosaurus astibiae as case study. Journal of Iberian Geology,43(2), 293–305.

    Google Scholar 

  • Vidal, D., Mocho, P., Páramo, A., Sanz, J. L., & Ortega, F. (2020). Ontogenetic similarities between giraffe and sauropod neck osteological mobility. PLoS One,15(1), e0227537. https://doi.org/10.1371/journal.pone.0227537.

    Article  Google Scholar 

  • Wilson, J. A. (2002). Sauropod dinosaur phylogeny: critique and cladistic analysis. Zoological Journal of the Linnean Society,136(2), 215–275. https://doi.org/10.1046/j.1096-3642.2002.00029.x.

    Article  Google Scholar 

  • Young, C. (1947). On Lufengosaurus magnus Young (sp. nov.) and additional finds of Lufengosaurus huenei Young. Palaeontologia Sinica, New Series C,12, 1–53.

    Google Scholar 

Download references

Acknowledgements

We thank M. Lamanna and A. Heinrici (Carnegie Museum), D. Brickman and M. Fox (Yale Peabody Museum), M. Norell and C. Mehling (American Museum of Natural History), P. Makovicky and W. Simpson (Field Museum of Natural History) and A. McGee, M. Ryan and A. Hall (Cleveland Museum of Natural History) for their help when consulting specimens under their care. Thanks to Ben Miller for sharing his extensive knowledge on fossil mounts and sharing bibliography. Thanks to Pedro Mocho for kindly sharing his pictures for some of the figures on this manuscript, and for his insight while reviewing the fossil mounts. Thanks to Alejandro Serrano-Martínez, Elena Cuesta, Verónica Díez-Díaz and Carmela Calés for reviewing earlier versions of this manuscript and their extremely useful suggestions. Thanks to the organization of the XVII EJIP for the oportunity of submitting this manuscript and to the assistants to the conference. Thanks to two anonymous reviewers for their comments, which have improved substantially this manuscript. DV’s research is funded by a predoctoral FPI UNED Grant (Ref. 0531174813 Y0SC001170).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Vidal.

Ethics declarations

Conflict of interest

Authors declare no competing interests exist.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vidal, D., Ortega, F. & Sanz, J.L. Sauropodomorph skeletal mounts as scientific devices for testing hypotheses. J Iber Geol 46, 177–193 (2020). https://doi.org/10.1007/s41513-020-00122-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41513-020-00122-3

Keywords

Palabras clave

Navigation