Journal of Iberian Geology

, Volume 45, Issue 2, pp 251–267 | Cite as

Interrelationships, palaeobiogeography and early evolution of Stereospondylomorpha (Tetrapoda: Temnospondyli)

  • Estevan EltinkEmail author
  • Rainer R. Schoch
  • Max C. Langer
Research Paper


The stereospondylomorph temnospondyls form a diverse group of early tetrapods that survived the Permian–Triassic extinction event and radiated during the Triassic. They encompass Carboniferous and Permian taxa from central and eastern Europe, such as ‘archegosauroids’, and early-divergent Gondwanan forms, such as rhinesuchids. By the Early Triassic, the group reached a worldwide distribution, with stereospondyls experiencing an impressive diversification and becoming major aquatic predators in fresh water, brackish, and even marine ecosystems. The origin of Stereospondyli dates back into the Permian, but the phylogenetic relationships of stereospondylomorphs, including ‘archegosauroids’ and the first stereospondyls remain unclear, representing the focus of the present study. Incorporating new records of the group to a broad revision of the different phylogenic hypotheses, a 37-taxon sample was scored for 221 morphological characters revised from previous works. The parsimony analysis resulted three most parsimonious trees (MPTs) of 737 steps. Their strict consensus tree depicts Sclerocephalidae and Intasuchidae as early-diverging stereospondylomorphs, ‘Archegosauroidea’ as paraphyletic array of taxa and Konzhukoviidae as the sister-group of a monophyletic Stereospondyli. An early-diverging and monophyletic Rhinesuchidae is divided into Australerpetinae and Rhinesuchinae, as the sister-group of the clade containing the Permian Peltobatrachus pustulatus, Arachana nigra, and a newly named clade (Superstes = ‘survivors’) of Triassic stereospondyls, formed by Lydekkerinidae and Neostereospondyli (Capitosauria and Trematosauria). Likelihood ancestral area reconstructions and time-ranging distributions along phylogeny provided a comprehensive description of early Stereospondylomorpha palaeobiogeography history. The initial evolution of the group took place in Laurasian areas (central and eastern Europe) during the Cisuralian and Guadalupian (early-mid Permian), with a broader Pangaean distribution for Platyoposauridae and Konzhukoviidae. Stereospondyls have Africa as their ancestral area, followed by dispersions to other Gondwanan regions during the Guadalupian and Lopingian (mid-late Permian), revealing a remarkable diversity previous to the P-Tr extinction. In the Triassic, Superstes greatly expanded across the Pangaea, highlighting another significant event in the evolution of Stereospondylomorpha.


Temnospondyli Stereospondylomorpha Permian Systematics Biogeography 


Los temnospóndilos estereospondilomorfos forman un grupo diverso de primeros tetrápodos que sobrevivieron al evento de la extinción Pérmico-Triásica y radiaron durante el Triásico. Ellos abarcan taxones del Carbonífero y el Pérmico de Centro y Este de Europa, tales como los “archegosauroides”, y las primeras formas Gondwánicas divergentes, como los rhinesúquidos. Durante el Triásico Inicial, el grupo alcanzó una distribución mundial, con estereospóndilos experimentando una diversificación impresionante y convirtiéndose en grandes depredadores acuáticos en ecosistemas de agua dulce, salobre e incluso marinos. El origen de Stereospondyli data del Pérmico, pero las relaciones filogenéticas de los esterespondilomorfos, incluyendo “archegosauroides” y los primeros estereospóndilos permanece poco clara, representando el foco del presente estudio. Incorporando nuevos registros del grupo a una amplia revisión de las diferentes hipótesis filogenéticas, una muestra de 37 taxones fue codificada para 221 caracteres morfológicos revisados de trabajos previos. El análisis de parsimonia resultó en tres arboles más parsimoniosos (MPTs en sus siglas en inglés) de 737 pasos. El árbol de consenso estricto representa Sclerocephalidae y Intasuchidae como los primeros estereospondilomorfos divergentes, “Archegosauroidea” como un grupo parafilético de taxones y Konzhukoviidea como el grupo hermano del monofilético grupo Stereospondyli. Rhinesuchidae es monofilético, divergió tempranamente y se divide en Australerpetinae y Rhinesuchinae, como el grupo hermano del clado que contiene el taxón Pérmico Peltobatrachus pustulatus, Arachana nigra, y el nuevo clado aquí nombrado (Superestes=`supervivientes’) de estereospóndilos Triásicos, formado por Lydekkerinidae y Neostereospondyli (Capitosauria y Trematosauria). La reconstrucción del área ancestral potencial y distribución de rangos temporales a lo largo de la filogenia proporcionan una descripción exhaustiva de la historia paleobiogeográfica de Stereospondylomorpha. La evolución inicial del grupo tuvo lugar en áreas de Laurasia (Europa Central y del Este) durante el Cisuraliense y Guadalupiense (Pérmico inicial-medio), con una amplia distribución en Pangea de Platyoposauridae y Konzhukoviidae. Los esterespóndilos tuvieron África como su área ancestral, seguido de dispersiones en otras regiones Gondwánicas durante el Guadalupiense y Lopingiense (Pérmico medio-tardío), revelando una remarcable diversidad previa a la extinción Pérmico-Triásica. En el Triásico, Superstes se expandió enormemente a través de Pangea, destacando otro evento significativo en la evolución de Stereospondylomorpha.

Palabras clave

Temnospondyli Stereospondylomorpha Pérmico Sistemática Biogeografía 



We thank Rodrigo Rocha Machado (DGM), Cesar Leandro Schultz (UFRGS), Philipe Havlik (GPIT), Florian Witzmann (MB), Mathew Lowe (CAMZM), Lorna Steel and Andrew Milner (UKNHM), Yuri Gubin and Mikhail Shishkin (PIN), Bernhard Zipfel and Bruce Rubidge (BPI), Sheena Kaal (IZIKO), Heidi Fourie (TM), and Carl Mehling (AMNH) to provide access to studied specimens in the research. EE was supported by foundations: FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) [grant number 2009/54656-9]; and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) [grant number 290092-2011-6]. This contribution used TNT v.1.1, a program made freely available by the Willi Hennig Society. Thorough reviews by Florian Witzmann, anonymous reviewer, and Josep Fortuny greatly improved the final manuscript.

Supplementary material

41513_2019_105_MOESM1_ESM.docx (45 kb)
Supplementary material 1 (DOCX 44 kb)
41513_2019_105_MOESM2_ESM.docx (36 kb)
Supplementary material 2 (DOCX 35 kb)
41513_2019_105_MOESM3_ESM.txt (9 kb)
Supplementary material 3 (TXT 9 kb)
41513_2019_105_MOESM4_ESM.emf (19 kb)
Supplementary material 4 (EMF 18 kb)
41513_2019_105_MOESM5_ESM.txt (14 kb)
Supplementary material 5 (TXT 14 kb)


  1. Barberena, M. C. (1998). Australepeton cosgriffi n. g., n. sp., a Late Permian Rhinesuchoid amphibian from Brazil. Anais da Academia Brasileira de Ciências, 70(1), 125–137.Google Scholar
  2. Benton, M. J. (2012). No gap in the Middle Permian record of terrestrial vertebrates. Geology, 40(4), 339–342.Google Scholar
  3. Boos, A. D. S., Kammerer, C. F., Shultz, C. L., & Paes Neto, V. D. (2015). A tapinocephalid dinocephalian (Synapsida, Therapsida) from the Rio do Rasto Formation (Parana Basin, Brazil): taxonomic, ontogenetic and biostratigraphic considerations. Journal of South American Earth Sciences, 63, 375–384.Google Scholar
  4. Boy, J. A. (1988). Über einige Vertreter der Eryopoidea (Amphibia: Temnospondyli) aus dem europäischen Rotliegend (? Höchstes Karbon—Perm). 1. Sclerocephalus. Paläontologische Zeitschrift, 62, 107–132.Google Scholar
  5. Boy, J. A. (1994). Synopsis of the tetrapods from the Rotliegend (Lower Permian) in the Saar-Nahe Basin (SW-Germany). In U. Heidtke (Ed.), New Research on Permo-Carboniferous Faunas (pp. 155–169). Bad Dürkheim: Pollichia.Google Scholar
  6. Bremer, K. (1994). Branch support and tree stability. Cladistics, 10, 295–304.Google Scholar
  7. Button, D. J., Lloyd, G. T., Ezcurra, M. D., & Butler, R. J. (2017). Mass extinctions drove increased global faunal cosmopolitanism on the supercontinent Pangaea. Nature Communications, 8(1), 733.Google Scholar
  8. Canoville, A., & Chinsamy, A. (2015). Bone microstructure of the stereospondyl Lydekkerina huxleyi reveals adaptive strategies to the harsh post Permian-extinction environment. Anatomical Record, 298(7), 1237–1254.Google Scholar
  9. Cisneros, J. C., Atayman-Güven, S., Rubidge, B. S., Sengör, A. M. C., & Schultz, C. L. (2012). Carnivorous dinocephalian from the Middle Permian of Brazil and tetrapod dispersal in Pangaea. Proceedings of the National Academy of Sciences of the United States of America, 10, 1584–1588.Google Scholar
  10. Cisneros, J. C., Marsicano, C., Angielczyk, K. D., Smith, R. M. H., Richter, M., Fröbisch, J., et al. (2015). New Permian fauna from tropical Gondwana. Nature Communications, 6, 1–8.Google Scholar
  11. Cohen, K. M., Finney, S. C., Gibbard, P. L., & Fan, J.-X. (2013). The ICS International Chronostratigraphic Chart. Episodes, 36, 199–204.Google Scholar
  12. Cox, C. B., & Hutchinson, P. (1991). Fishes and amphibians from the Late Permian Pedra do Fogo Formation of northern of Brazil. Paleontology, 34, 561–573.Google Scholar
  13. Damiani, R. J. (2001). A systematic revision and phylogenetic analysis of Triassic mastodonsauroids (Temnospondyli: Stereospondyli). Zoological Journal of the Linnean Society, 133, 379–482.Google Scholar
  14. Damiani, R. J., & Rubidge, B. S. (2003). A review of the South African temnospondyl amphibian record. Palaeontologia Africana, 39, 21–36.Google Scholar
  15. Dias, E. V., & Barberena, M. C. (2001). A temnospondyl amphibian from the Rio do Rasto Formation, Upper Permian of Southern Brazil. Anais da Academia Brasileira de Ciências, 73(1), 135–143.Google Scholar
  16. Dias, E. V., & Schultz, C. L. (2003). The first Paleozoic Temnospondyl postcranial skeleton from South America. Revista Brasileira de Paleontologia, 6, 29–42.Google Scholar
  17. Dias-da-Silva, S., & Hewison, R. (2013). Phylogenetic Analysis and Palaeobiogeography of the Pangaean Lower Triassic Lydekkerinidae (Temnospondyli, Stereospondyli). In 73rd Meeting of the Society of Vertebrate Paleontology (pp. 116–116). Los Angeles.Google Scholar
  18. Eltink, E., Dias, E. V., Dias-da-Silva, S., Schultz, C. L., & Langer, M. C. (2016). The cranial morphology of the temnospondyl Australerpeton cosgriffi from the Middle-Late Permian of Paraná Basin and the phylogenetic relationships of Rhinesuchidae. Zoological Journal of the Linnean Society, 176, 835–860.Google Scholar
  19. Fluteau, F., Besse, J., Broutin, J., & Ramstein, G. (2001). The Late Permian climate. What can be inferred from climate modelling concerning Pangea scenarios and Hercynian range altitude. Palaeogeography, Palaeoclimatology, Palaeoecology, 167(1–2), 39–71.Google Scholar
  20. Fortuny, J., Marcé-Nogué, J., Steyer, J. S., de Esteban-Trivigno, S., & Mujal, E. (2016). Comparative 3D analyses and palaeoecology of giant early amphibians (Temnospondyli: Stereospondyli). Scientific Reports, 6, 30387.Google Scholar
  21. Fraas, E. (1889). Die Labyrinthodonten der Schwäbischen Trias. Palaeontographica, 36, 1–158.Google Scholar
  22. Goloboff, P. A., Farris, J. S., & Nixon, K. C. (2008). TNT, a free program for phylogenetic analysis. Cladistics, 24, 774–786.Google Scholar
  23. Gubin, Y. M. (1991). Permian archegosauroid amphibians of the USSR. Trudy Paleontologicheskogo Instituta, Akademiya Nauk SSSR, 249, 1–138.Google Scholar
  24. Gubin, Y. M. (1997). Skull morphology of Archegosaurus decheni Goldfuss (Amphibia, Temnospondyli) from the Early Permian of Germany. Alcheringa, 21(1–2), 103–121.Google Scholar
  25. Holmes, S. (2003). Bootstrapping phylogenetic trees: Theory and methods. Statistical Science, 18(2), 241–255.Google Scholar
  26. Jeannot, A. M., Damiani, R., & Rubidge, B. S. (2006). Cranial anatomy of the Early Triassic stereospondyl Lydekkerina huxleyi (Tetropoda: Temnospondyli) and the taxonomy of South African lydekkerinids. Journal of Vertebrate Paleontology, 26, 822–838.Google Scholar
  27. Jones, M. J., & Truswell, E. M. (1992). Late Carboniferous and Early Permian palynostratigraphy of the Joe Joe Group, southern Galilee Basin, Queensland, and implications for Gondwana Stratigraphy. Bureau of Mines and Mineral Resources Journal of Australian Geology and Geophysics, 13, 143–185.Google Scholar
  28. Kemp, E. M., Balme, B. E., Helby, R. J., Kyle, R. A., Playford, G., & Price, P. L. (1977). Carboniferous and Permian palynostratigraphy in Australia and Antarctica: a review. Bureau of Mines and Mineral Resources Journal of Australian Geology and Geophysics, 2, 177–208.Google Scholar
  29. Lucas, S. G., & Heckert, A. B. (2001). The aetosaur Stagonolepis from the Upper Triassic of Brazil and its biochronologic significance. Neues Jahrbuch für Geologie und Paläontologie Monatshefte, 2001, 719–732.Google Scholar
  30. Maddison, W. P., & Maddison, D. R. (2011). Mesquite: a modular system for evolutionary analysis. Version 2.75. Accessed 28 Aug 2018.
  31. Marsicano, C. A., Latimer, E., Rubidge, B., & Smith, R. M. H. (2017). The Rhinesuchidae and early history of the Stereospondyli (Amphibia: Temnospondyli) at the end of the Palaeozoic. Zoological Journal of the Linnean Society, 181(2), 1–28.Google Scholar
  32. McHugh, J. B. (2012). Temnospondyl ontogeny and phylogeny, a window into terrestrial ecosystems during the Permian-Triassic mass extinction (pp 1–217). Iowa: PhD Thesis. Univesity of Iowa.Google Scholar
  33. Milner, A. R. (1990). The radiation of temnospondyl amphibians. In P. D. Taylor & G. P. Larwood (Eds.), Major Evolutionary Radiations Systematics Association Special (Vol. 42, pp. 322–349). Oxford: Clarendon Press.Google Scholar
  34. Milner, A. R. (1993). The Paleozoic relatives of lissamphibians. Amphibian relationships. Phylogenetic analysis of morphology and molecules. Herpetological Monograph, 7, 8–27.Google Scholar
  35. Pacheco, C. P., Eltink, E., Müller, R. T., & Dias-da-Silva, S. (2017). A new Permian temnospondyl with Russian from South America, the new family Konzhukoviidae, and the phylogenetic status of Archegosauroidea. Journal of Systematic Palaeontology, 15(3), 241–256.Google Scholar
  36. Panchen, A. L. (1959). A new armoured amphibian from the Upper Permian of East Africa. Philosophical Transactions of the Royal Society of London. Series B, 242, 207–281.Google Scholar
  37. Pawley, K., & Warren, A. (2005). A terrestrial stereospondyl from the Lower Triassic of South Africa: The postcranial skeleton of Lydekkerina huxleyi (Amphibia: Temnospondyli). Palaeontology, 48, 281–298.Google Scholar
  38. Peters, S. E. (2006). Macrostratigrahy of North America. The Journal of Geology, 114, 391–412.Google Scholar
  39. Piñeiro, G., Ramos, A., & Marsicano, C. A. (2012). A rhinesuchid-like temnospondyl from the Permo-Triassic of Uruguay. Comptes Rendus Palevol, 18, 65–78.Google Scholar
  40. Price, L. I. (1948). Um anfíbio labirintodonte da Formação Pedra do Fogo, estado do Maranhão. Boletim divisão de geologia e mineralogia, Departamento Nacional de Produção Nacional, 124, 1–32.Google Scholar
  41. Rees, P. M., Ziegler, A. M., Gibbs, M. T., Kutzbach, J. E., Behling, P. J., & Rowley, D. B. (2002). Permian phytogeographic patterns and climate data/model comparisons. The Journal of Geology, 110(1), 1–31.Google Scholar
  42. Romer, A. S. (1947). Review of the Labyrinthodontia. Bulletin Museum Comparative Zoology Harvard, 99, 1–397.Google Scholar
  43. Ruta, M., & Benton, M. J. (2008). Calibrated diversity, tree topology and the mother of mass extinctions the lesson of temnospondyls. Palaeontology, 51(6), 1261–1288.Google Scholar
  44. Ruta, M., Jeffery, J. E., & Coates, M. I. (2003). A supertree of early tetrapods. Proceedings of the Royal Society B: Biological Sciences, 273, 2107–2111.Google Scholar
  45. Ruta, M., Pisani, D., Lloyd, G. T., & Benton, M. J. (2007). A supertree of Temnospondyli: cladogenetic patterns in the most species-rich group of early tetrapods. Proceedings of the Royal Society B Biological Sciences, 274, 3087–3095.Google Scholar
  46. Schoch, R. R. (2000). Biogeography of Stereospondyl amphibians. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 215(2), 201–231.Google Scholar
  47. Schoch, R. R. (2013). The major clades of temnospondyls: an inclusive phylogenetic analysis. Journal of Systematic Palaeontology, 11, 673–705.Google Scholar
  48. Schoch, R. R., Fastnacht, M., Fichter, J., & Keller, T. (2007). Anatomy and relationships of the Triassic temnospondyl Sclerothorax. Acta Palaeontologica Polonica, 52, 117–136.Google Scholar
  49. Schoch, R. R., & Milner, A. R. (2000). Stereospondyli, Stem-Stereospondyli, Rhinesuchidae, Rhitidostea, Trematosauroidea, Capitosauroidea. In H. D. Sues (Ed.), Handbuch der Paläoherpetologie (Encyclopdia of Paleoherpetology), Part 3 b. Pfeil: Munich.Google Scholar
  50. Schoch, R. R., & Milner, A. R. (2014). Temnospondyli. In H. D. Sues (Ed.), Handbuch der Paläoherpetologie (Encyclopdia of Paleoherpetology), Part 3 b. Pfeil: Munich.Google Scholar
  51. Schoch, R. R., & Witzmann, F. (2009a). Osteology and relationships of the temnospondyl Sclerocephalus. Zoological Journal of the Linnean Society, 157, 135–168.Google Scholar
  52. Schoch, R. R., & Witzmann, F. (2009b). The temnospondyl Glanochthon from the Permian Meisenheim Formation of Germany. Special Papers in Palaeontology, 81, 121–136.Google Scholar
  53. Scotese, C. R. (2002). Paleomap Project. Accessed 8 Oct 2015.
  54. Şengör, A. M. C., & Atayman, S. (2009). The Permian extinction and the Thethys: An exercise in global geology (p. 448). Special Paper: Geological Society of America.Google Scholar
  55. Shishkin, M. A., Novikov, I. V., & Gubin, Y. M. (2000). Permian and Triassic Temnospondyls of Russia. In M. J. Benton, M. A. Shishkin, D. M. Unwin, & E. N. Kurochkin (Eds.), The age of dinosaurs in Russia and Mongolia (pp. 35–59). Cambridge: Cambridge University Press.Google Scholar
  56. Shishkin, M. A., Rubidge, B. S., & Kitching, J. W. (1996). A new lydekkerinid (Amphibia, Temnospondyli) from the lower Triassic of South Africa: implications for evolution of the early capitosauroid cranial pattern. Philosophical Transaction of the Royal Society of London B, 351, 1635–1659.Google Scholar
  57. Sidor, C. A., Keefe, F. R., Damiani, R., Steyer, J. S., Smith, R. M. H., Larsson, H. C. E., et al. (2005). Permian tetrapods from the Sahara show climate-controlled endemism in Pangaea. Nature, 434, 886–889.Google Scholar
  58. Sidor, C. A., Vilhena, D. A., Angielczyk, K. D., Huttenlocker, A. K., Nesbitt, S. J., Peecook, B. R., et al. (2013). Provincialization of terrestrial faunas following the end-Permian mass extinction. Proceedings of the National academy of Sciences of the United States of America, 110(20), 8129–8133.Google Scholar
  59. Stayton, C. T., & Ruta, M. (2006). Geometric morphometrics of the skull roof of stereospondyls (Amphibia: Temnospondyli). Palaeontology, 49, 307–337.Google Scholar
  60. Stephenson, M. H., Angiolini, L., & Leng, M. J. (2007). The Early Permian fossil record of Gondwana and its relationship to deglaciation: a review. In M. Williams, A. Haywood, J. Gregory, & D. Schmidt (Eds.), Deep-time perspectives on climate change: marrying the signal from computer models and biological proxies (pp. 169–189). London: Geological Society of London.Google Scholar
  61. Steyer, J. S., Damiani, R., Sidor, C. A., O’Keefe, R., Larsson, H. C. E., Maga, A., et al. (2006). The vertebrate fauna of the Upper Permian of Niger. IV. Nigerpeton ricqlesi (Temnospondyli: Cochleosauridae), and the edopoid colonization of Gondwana. Journal of Vertebrate Paleontology, 26, 18–28.Google Scholar
  62. Steyer, J. S., & Jalil, N. E. (2009). First evidence of a temnospondyl in the Late Permian of the Agana Basin, Morocco. Special Papers in Paleontology, 81, 155–160.Google Scholar
  63. Strapasson, A., Pinheiro, F. L., & Soares, M. (2015). On a new Stereospondylomorpha temnospondyl from the Middle/Late Permian of Southern Brazil. Acta Palaeontologica Polonica, 10, 1–37.Google Scholar
  64. Tarailo, D. A. (2018). Taxonomic and ecomorphological diversity of temnospondyl amphibians across the Permian-Triassic boundary in the Karoo Basin (South Africa). Journal of Morphology, 279(12), 1840–1848.Google Scholar
  65. Truswell, E. M. (1980). Permo-Carboniferous palynology of Gondwanaland: progress and problems in the decade of 1980. Bureau of Mines and Mineral Resources Journal of Australian Geology and Geophysics, 5, 95–111.Google Scholar
  66. Warren, A. A. (2000). Secondarily aquatic temnospondyls of the Upper Permian and Mesozoic. In H. Heatwole & R. L. Carroll (Eds.), Amphibian Biology (Vol. 4. Palaeontology) (pp. 1121–1149). Chipping Norton: Surrey Beatty.Google Scholar
  67. Warren, A. A., Damiani, R. J., & Yates, A. M. (2000). Palaeobiogeography of Australian fossil amphibians. Historical Biology, 15, 171–179.Google Scholar
  68. Watson, D. M. S. (1919). The structure, evolution and origin of the Amphibia. The ‘Orders’ Rachitomi and Stereospondyli. Philosophical Transaction of the Royal Society of London B, 209, 1–73.Google Scholar
  69. Watson, D. M. S. (1962). The evolution of Labirinthodonts. Philosophical Transactions of Royal Society of London B, 245, 219-165.Google Scholar
  70. Werneburg, R., & Steyer, J. S. (2002). Revision of Cheliderpeton vranyi Fritsch, 1877 (Amphibia: Temnospondyli) from the Lower Permian of Bohemia (Czech Republic). Paläontologische Zeitschrift, 76, 149–162.Google Scholar
  71. Wernerburg, R., & Schneider, J. (1996). The Permian temnospondyl amphibians of Índia. In: A. R. Milner. Studies on Carboniferous and Permian vertebrates. Special papers in Paleontology, 52, 105–128.Google Scholar
  72. Witzmann, F. (2005). Cranial morphology and ontogeny of the permo-carboniferous temnospondyl Archegosaurus decheni Goldfuss, 1847 from the Saar-Nahe Basin, Germany. Transactions of the Royal Society of Edinburgh: Earth Sciences, 96, 131–162.Google Scholar
  73. Witzmann, F., & Schoch, R. R. (2006). The postcranium of Archegosaurus decheni, and a phylogenetic analysis of temnospondyl postcrania. Palaeontology, 49, 1211–1235.Google Scholar
  74. Witzmann, F., & Voigt, S. (2015). An Eryops-like interclavicle from the Early Permian of the Saar-Nahe Basin, and a discussion of temnospondyl interclavicle characters. Paläontologische Zeitschrift, 89(3), 449–458.Google Scholar
  75. Yates, A. M. (1999). The Lapillopsidae: A new family of small temnospondyls from the Early Triassic of Australia. Journal of Vertebrate Paleontology, 19, 302–320.Google Scholar
  76. Yates, A. M., & Warren, A. A. (2000). The phylogeny of the ‘higher’ temnospondyls (Vertebrata: Choanata) and its implications for the monophyly and origins of the Stereospondyli. Zoological Journal of the Linnean Society, 128(1), 77–121.Google Scholar
  77. Ziegler, A. M., Hulver, M. L., & Rowley, D. B. (1997). Permian world topography and climate. In I. P. Martini (Ed.), Late glacial and postglacial environmental changes: Quaternary, Carboniferous-Permian and Proterozoic (pp. 111–146). Oxford: Oxford University Press.Google Scholar
  78. Zittel, K. A. (1888). Handbuch der Paläontologie. Abteilung 1. Paläozoologie Band III: Vertebrata (Pisces, Amphibia, Reptilia, Aves). Oldenbourg, Munich and Leipzig, p. 890.Google Scholar

Copyright information

© Universidad Complutense de Madrid 2019

Authors and Affiliations

  1. 1.Universidade Federal do Vale do São Francisco, Colegiado de EcologiaBahiaBrazil
  2. 2.Staatliches Museum für Naturkunde StuttgartStuttgartGermany
  3. 3.Universidade de São Paulo, FFCLRP, Laboratório de PaleontologiaRibeirão PretoBrazil

Personalised recommendations