Journal of Iberian Geology

, Volume 45, Issue 2, pp 287–300 | Cite as

A large temnospondyl humerus from the Rhaetian (Late Triassic) of Bonenburg (Westphalia, Germany) and its implications for temnospondyl extinction

  • Dorota Konietzko-MeierEmail author
  • Jennifer D. Werner
  • Tanja Wintrich
  • P. Martin Sander
Research Paper


Temnospondyls are a group of basal tetrapods that existed from the Early Carboniferous to the Early Cretaceous. They were characteristic members of Permian and Triassic continental faunas around the globe. Only one clade, the Brachyopoidea (Brachyopidae and Chigutisauridae), is found as relics in the Jurassic of eastern Asia and the Cretaceous of Australia. The other Late Triassic clades, such as Plagiosauridae, Metoposauridae, and Cyclotsauridae, are generally believed to have gone extinct gradually before the end of the Triassic and putative Rhaetian records are stratigraphically poorly constrained. Temnospondyl humeri all show a similar morphological pattern, being stout, short, with widened ends, and with a typical torsion between the proximal and distal heads. Based on these characters, a humerus found in a Rhaetic-type bonebed in unequivocally Rhaetian sediments (marine Exter Formation) in a clay pit at Bonenburg (eastern Westphalia, Germany) was identified as pertaining to the temnospondyl cf. Cyclotosaurus sp. The humeral midshaft histology also supports temnospondyl affinities and serves to exclude plesiosaurs and ichthyosaurs from consideration. This find is the geologically youngest record of a non-brachyopoid temnospondyl, indicating that cyclotosaurids survived well into the Rhaetian, likely falling victim to the end-Triassic extinction.


Temnospondyli Cyclotosaurus Paleohistology Rhaetic bonebed Formación Exter 


Los Temnospóndilos son un grupo de tetrápodos basales que existieron des del Carbonífero Inicial hasta el Cretácico Inicial. Ellos fueron miembros característicos de las faunas continentales del Pérmico y el Triásico de todo el globo. Tan solo un clado, Brachyopoidea (Brachyopidae y Chigutisauridae), se encuentran como relictos en el Jurásico de Asia oriental y del Cretácico de Australia. Los otros clados del Triásico Superior, como Plagiosauridae, Metopoauridae, y Cyclotosauridae, generalmente se cree que se extinguieron gradualmente antes del final del Triásico y los putativos registros en el Raetiense están estratigráficamente pobremente constreñidos.

Los húmeros de Temnospóndilos muestran en todos los casos un patrón morfológico similar, siendo robustos, cortos, con un final ancho, y con una torsión típica entre las cabezas proximales y distales. En base a estos caracteres, un humero encontrado en un Rhaetic-type bonebed en sedimentos inequívocamente Raetienses (Formación marina Exter) en un pozo de barro en Bonenburg (Este de Westphalia, Alemania), fueron identificados como pertenecientes al temnospóndilo cf. Cyclotosaurus sp. El corte histológico en el eje intermedio del humero también apoya la afinidad con temnospóndilos y sirve para excluir plesiosaurios y ictiosaurios. Este hallazgo es el registro geológico más joven de un temnospóndilo no-braquiopodo, indicando que los cyclotosauridos sobrevivieron hasta bien entrado el Raetiense, posiblemente siendo víctimas de la extinción de finales del Triásico.

Palabras clave

Temnospondyli Cyclotosaurus Paleohistología Rhaetic bonebed Formación Exter 



First and foremost, we want to thank Michael Mertens of Altenbeken-Schwaney for making the study of this specimen possible and facilitating its transfer to the LWL-MFN collections. Georg Oleschinski is thanked for the clear photographs of the bone, and Olaf Dülfer is thanked for his help with thin sectioning and casting of the specimen. We thank Martin Aberhan, Robert Bussert and Paul E. Olsen for providing measured sections for Fig. 1b. Tomasz Sulej (Polish Academy of Science, Institute of Paleobiology) is acknowledged for providing the photo of the Cyclotosaurus intermedius humerus. We gratefully acknowledge the LWL-MFN and its former and current directors as well as the DFG (German Science Foundation, grant no. SA 469/47-1) for funding. We want to thank especially guest editors (Josep Fortuny and Jean-Sébastien Steyer) for making this special issue possible and two reviewers (Marco Marzola and the second anonymous) for helpful discussion and comments.


  1. Andrews, S. D., Kelly, S. R., Braham, W., & Kaye, M. (2014). Climatic and eustatic controls on the development of a Late Triassic source rock in the Jameson Land Basin, East Greenland. Journal of the Geological Society, 171(5), 609–619.Google Scholar
  2. Averianov, A. O., Martin, T., Skutschas, P. P., Rezvyi, A. S., & Bakirov, A. A. (2008). Amphibians from the Middle Jurassic Balabansai Svita in the Fergana Depression, Kyrgyzstan (Central Asia). Palaeontology, 51(2), 471–485.Google Scholar
  3. Barycka, E. (2007). Morphology and ontogeny of the humerus of the Triassic temnospondyl amphibian Metoposaurus diagnosticus. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 243(3), 351–361.Google Scholar
  4. Bonaparte, J. F. (1978). El Mesozoico de América del Sur y sus tetrápodos. Opera Lilloona, 26, 1–596.Google Scholar
  5. Boy, J. A. (1972). Die Branchiosaurier (Amphibia) des saarpfälzischen Rotliegenden (Perm, SW-Deutschland). Abhandlungen des hessischen Landesamtes für Bodenforschung, 65, 1–137.Google Scholar
  6. Brusatte, S. L., Butler, R. J., Mateus, O., & Steyer, J. S. (2015). A new species of Metoposaurus from the Late Triassic of Portugal and comments on the systematics and biogeography of metoposaurid temnospondyls. Journal of Vertebrate Paleontology, 35(3), e912988.Google Scholar
  7. Buffetaut, E., & Wouters, G. (1986). Amphibian and reptile remains from the Upper Triassic of Saint-Nicolas-de-Port (eastern France) and their biostratigraphic significance. Modern Geology, 10(2–3), 133–145.Google Scholar
  8. Case, E. C. (1931). Description of a new species of Buettneria, with a discussion of the brain case. Contributions of the Museum of Paleontology, University of Michigan, 3, 187–206.Google Scholar
  9. Case, E. C. (1932). A collection of stegocephalians from Scurry County, Texas. Contributions of the Museum of Paleontology, University of Michigan, 4(1), 1–56.Google Scholar
  10. Cherin, S. (1977). A new brachyopid, Batrachosuchus concordi sp. nov., from the Luanga Valley, Zambia, with a redescription of Batrachosuchus browni Broom, 1903. Palaeontologia Africana, 20, 87–109.Google Scholar
  11. Chowdhury, T. R. (1965). A new metoposaurid amphibian from the Upper Triassic Maleri Formation of Central India. Philosophical Transactions of the Royal Society London B, 250(761), 1–52.Google Scholar
  12. Clemmensen, L. B., Kent, D. V., & Jenkins, F. A. (1998). A Late Triassic lake system in East Greenland: facies, depositional cycles and palaeoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology, 140(1–4), 135–159.Google Scholar
  13. Clemmensen, L. B., Milàn, J., Adolfssen, J. S., Estrup, E. J., Frobøse, N., Klein, N., et al. (2016). The vertebrate-bearing Late Triassic Fleming Fjord Formation of central East Greenland revisited: stratigraphy, palaeoclimate and new palaeontological data. Geological Society, London, Special Publications, 434(1), 31–47.Google Scholar
  14. Colbert, E. H. (1958). Tetrapod extinctions at the end of the Triassic Period. Proceedings of the National Academy of Sciences, 44(9), 973–977.Google Scholar
  15. Damiani, R. J. (2000). Bone histology of some Australian Triassic temnospondyl amphibians: preliminary data. Modern Geology, 24, 109–124.Google Scholar
  16. de Ricqlès, A. (1975). Quelques remarques paléo-histologiques sur le problème de la néoténie chez les stégocéphales. Colloques Internationaux du Centre National de la Recherche Scientifique, 218, 351–363.Google Scholar
  17. Dias-da-Silva, S., Sengupta, D. P., Cabreira, S. F., & Da Silva, L. R. (2012). The presence of Compsocerops (Brachyopoidea: chigutisauridae) (Late Triassic) in southern Brazil with comments on chigutisaurid palaeobiogeography. Palaeontology, 55, 163–172.Google Scholar
  18. Dutuit, J. M. (1976). Introduction à l’étude paléontologique du Trias Continental marocain. Descriptions des premiers stegocephales recueillis dans le Couloir d’Argana (Atlas occidental). Memories du Museum National d’Histoire Naturelle Sciences de la Terre, 36, 1–253.Google Scholar
  19. Dzik, J., Sulej, T., & Niedźwiedzki, G. (2008). A dicynodont-theropod association in the latest Triassic of Poland. Acta Palaeontologica Polonica, 53(4), 733–738.Google Scholar
  20. Fraas, E. (1889). Die Labyrinthodonten aus der schwäbischen Trias. Palaeontographica, 36, 1–158.Google Scholar
  21. Fraas, E. (1913). Neue Labyrinthodonten aus der schwäbischen Trias. Palaeontographica, 60, 275–294.Google Scholar
  22. Georgiadis, M., Guizar-Sicairos, M., Gschwend, O., Hangartner, P., Bunk, O., Müller, R., et al. (2016). Ultrastructure organization of human trabeculae assessed by 3D sSAXS and relation to bone microarchitecture. PLoS ONE, 11(8), e0159.Google Scholar
  23. Gregory, W. K. (1949). The humerus from fish to man. American Museum Novitates, 1400, 1–54.Google Scholar
  24. Hellrung, H. (2003). Gerrothorax pustuloglomeratus, ein Temnospondyle (Amphibia) mit knöcherner Branchialkammer aus dem Unteren Keuper von Kupferzell (Süddeutschland). Stuttgarter Beiträge zur Naturkunde - Serie B, 330, 1–132.Google Scholar
  25. Houssaye, A., Scheyer, T. M., Kolb, C., Fischer, V., & Sander, P. M. (2014). A new look at ichthyosaur long bone microanatomy and histology: implications for their adaptation to an aquatic life. PLoS ONE, 9(4), e95637.Google Scholar
  26. Hunt, A. P. (1993). Revision of the Metoposauridae (Amphibia, Temnospondyli) and description of a new genus from Western North America. In M. Morales (Ed.), Aspects of Mesozoic Geology and Paleontology of the Colorado Plateau (pp. 67–97). Museum of Northern Arizona Bulletin, 59.Google Scholar
  27. Ingavat, R., & Janvier, P. (1981). Cyclotosaurus cf. posthumus Fraas (Capitosauridae, Stereospondyli) from the Huai Hin Lat Formation (Upper Triassic), Northeastern Thailand: with a note on capitosaurid biogeography. Geobios, 14(6), 711–725.Google Scholar
  28. Jaekel, O. (1914). Über die Wirbeltierfunde in der oberen Trias von Halberstadt. Palaeontologische Zeitschrift, 1, 155–215.Google Scholar
  29. Jäger, G. F. V. (1824). De Ichthyosauri sive Proteosauri, Fossilis, Speciminibus, in Agro Bollensi in Wurtembergia Repertis. Stuttgart: Cotta.Google Scholar
  30. Jäger, G. F. V. (1828). Über die fossilen Reptilien, welche in Würtemberg aufgefunden worden sind. Stuttgart: Metzler.Google Scholar
  31. Jenkins, F. J., Shubin, N. H., Amarel, W. W., Gatesy, S. M., Schaff, C. R., Clemmensen, L. B., et al. (1994). Late Triassic continental vertebrates and depositional environments of the Fleming Fjord Formation, Jameson Land, east Greenland. Meddelelser om Grønland, 32, 1–25.Google Scholar
  32. Jenkins, F. A., Shubin, N. H., Gatesy, S. M., & Warren, A. (2008). Gerrothorax pulcherrimus from the Upper Triassic Fleming Fjord Formation of East Greenland and a reassessment of head lifting in temnospondyl feeding. Journal of Vertebrate Paleontology, 28(4), 935–950.Google Scholar
  33. Kear, B. P., Poropat, S. F., & Bazzi, M. (2016). Late Triassic capitosaurian remains from Svalbard and the palaeobiogeographical context of Scandinavian Arctic temnospondyls. Geological Society, London, Special Publications, 434(1), 113–126.Google Scholar
  34. Klein, N., & Sander, M. (2008a). Ontogenetic stages in the long bone histology of sauropod dinosaurs. Paleobiology, 34(2), 247–263.Google Scholar
  35. Klein, N., & Sander, P. M. (2008b). Ontogenetic stages in the long bone histology of sauropod dinosaurs. Paleobiology, 34, 248–264.Google Scholar
  36. Konietzko-Meier, D., & Klein, N. (2013). Unique growth pattern of Metoposaurus diagnosticus krasiejowensis (Amphibia, Temnospondyli) from the Upper Triassic of Krasiejów, Poland. Palaeogeography, Palaeoclimatology, Palaeoecology, 370, 145–157.Google Scholar
  37. Konietzko-Meier, D., & Sander, P. M. (2013). Long bone histology of Metaposaurus diagnosticus (Temnospondyli) from the Late Triassic of Krasiejów (Poland) and its paleobiological pmplications. Journal of Vertebrate Paleontology, 35(5), 1–16.Google Scholar
  38. Konietzko-Meier, D., & Schmitt, A. (2013). Micro-CT-scan as a new, non-invasive method for palaeohistological studies on the basis of a Plagiosuchus (Amphibia, Temnospondyli, Plagiosauridae) femur. Netherlands Journal of Geosciences, 92(2/3), 97–108.Google Scholar
  39. Konietzko-Meier, D., Shelton, C. D., & Sander, P. M. (2016). The discrepancy between morphological and microanatomical patterns of anamniotic stegocephalian postcrania from the Early Permian Briar Creek Bonebed (Texas). Comptes Rendus Palevol, 15(1–2), 103–114.Google Scholar
  40. Krahl, A., Klein, N., & Sander, P. M. (2013). Evolutionary implications of the divergent long bone histologies of Nothosaurus and Pistosaurus (Sauropterygia, Triassic). BMC Evolutionary Biology, 13(1), 123.Google Scholar
  41. Kuhn, O. (1932). Labyrinthodonten und Parasuchier aus dem mittleren Keuper von Ebrach in Oberfranken. Neues Jahrbuch für Mineralogie. Geologie und Paläontologie. Abteilung B, 69, 94–143.Google Scholar
  42. Kuhn, O. (1939). Beiträge zur Keuperfauna von Halberstadt. Paläontologische Zeitschrift, 21, 258–286.Google Scholar
  43. Kuhn, O. (1942). Über Cyclotosaurus hemprichi Kuhn und einige weitere Tetrapodenreste aus dem Keuper von Halberstadt. Beiträge zur Geologie von Thüringen, 6, 181–197.Google Scholar
  44. Lamm, E.-T. (2013). Preparation and sectioning of specimens. In K. Padian & E.-T. Lamm (Eds.), Bone histology of fossil tetrapods: advancing methods, analysis, and interpretation (pp. 55–160). Los Angeles: University of California Press.Google Scholar
  45. Lopuchowycz, V. B., & Massare, J. A. (2002). Bone microstructure of a Cretaceous ichthyosaur. Paludicola, 3, 139–147.Google Scholar
  46. Lucas, S. G. (2010). The Triassic timescale based on nonmarine tetrapod biostratigraphy and biochronology. In S. G. Lucas (Ed.), The Triassic timescale (pp. 447–500). Geological Society, London, Special Publication, 334.Google Scholar
  47. Lucas, S. G. (2017). The Late Triassic timescale. In L.H. Tanner (Ed.), The Late Triassic world: Earth in a time of transition. Topics in Geobiology (pp. 1–25). New York: Springer.Google Scholar
  48. Lucas, S. G., & Spielmann, J. A. (2013). Magnetostratigraphy of the Upper Triassic Chinle Group in New Mexico: An appraisal of 40 years of analysis. In L. H. Tanner, J. A. Spielmann, & S. G. Lucas (Eds), The Triassic system (pp. 375–381). New Mexico Museum of Natural History and Science, Bulletin, 61.Google Scholar
  49. Lucas, S. G., & Tanner, L. H. (2004). Late Triassic extinction events. Albertiana, 31, 31–40.Google Scholar
  50. Maisch, M. W., & Matzke, A. T. (2005). Temnospondyl amphibians from the Jurassic of the Southern Junggar Basin (NW China). Paläontologische Zeitschrift, 79(2), 285–301.Google Scholar
  51. Marsicano, C. A. (1993). Postcranial skeleton of a brachyopoid (Amphibia, Temnospondyli) from the Triassic of Mendoza (Argentina). Alcheringa, 17(3), 185–189.Google Scholar
  52. Marsicano, C. A. (1999). Chigutisaurid amphibians from the Upper Triassic of Argentina and their phylogenetic relationships. Palaeontology, 42, 545–565.Google Scholar
  53. Marzola, M., Mateus, O., Milàn, J., & Clemmensen, L. B. (2018). A review of Palaeozoic and Mesozoic tetrapods from Greenland. Bulletin of the Geological Society of Denmark, 66, 21–46.Google Scholar
  54. Marzola, M., Mateus, O., Shubin, N. H., & Clemmensen, L. B. (2017). Cyclotosaurus naraserluki, sp. nov., a new Late Triassic cyclotosaurid (Amphibia, Temnospondyli) from the Fleming Fjord Formation of the Jameson Land Basin (East Greenland). Journal of Vertebrate Paleontology, 37(2), 1303501.Google Scholar
  55. Mateus, O., Butler, R. J., Brusatte, S. L., Whiteside, J. H., & Steyer, J. S. (2014). The first phytosaur (Diapsida, Archosauriformes) from the Late Triassic of the Iberian Peninsula. Journal of Vertebrate Paleontology, 34(4), 970–975.Google Scholar
  56. McGowan, C., & Motani, R. (1999). A reinterpretation of the Upper Triassic ichthyosaur Shonisaurus. Journal of Vertebrate Paleontology, 19(1), 42–49.Google Scholar
  57. Mears, E. M., Rossi, V., MacDonald, E., Coleman, G., Davies, T. G., Arias-Riesgo, C., et al. (2016). The Rhaetian (Late Triassic) vertebrates of Hampstead Farm Quarry, Gloucestershire, UK. Proceedings of the Geoogist’s Association, 127, 478–505.Google Scholar
  58. Meyer, H. V., & Plieninger, T. (1844). Beiträge zur Paläontologie Württemberg’s, enthaltend die fossilen Wirbeltierreste aus den Triasgebilden mit besonderer Rücksicht auf die Labyrinthodonten des Keupers. Stuttgart: Schweizerbart.Google Scholar
  59. Milàn, J., Clemmensen, L. B., Adolfssen, J. S., Estrup, E. J., Frobøse, N., Klein, N., et al. (2012). A preliminary report on coprolites from the Late Triassic part of the Kap Stewart Formation, Jameson Land, East Greenland. New Mexico Museum of Natural History and Science Bulletin, 57, 203–206.Google Scholar
  60. Milner, A. R. (1990). The radiations of temnospondyl amphibians. Systematics Association Special, 42, 321–349.Google Scholar
  61. Milner, A. R. (1993). Amphibian-grade Tetrapoda. In M. J. Benton (Ed.), The Fossil Record 2 (pp. 665–679). London: Chapman & Hall.Google Scholar
  62. Mukherjee, D., Ray, S., & Sengupta, D. P. (2010). Preliminary observations on the bone microstructure, growth patterns, and life habits of some Triassic temnospondyls from India. Journal of Vertebrate Paleontology, 30(1), 78–93.Google Scholar
  63. Niedźwiedzki, G., & Sulej, T. (2008). Lipie Śląskie koło Lisowic—okno na późnotriasowy ekosystem lądowy. Przegląd Geologiczny, 56, 821–822.Google Scholar
  64. Nilsson, T. (1934). Vorläufige Mitteilung über einen Stegocephalenfund aus dem Rhät Schonens. Geologiska Föreningen I Stockholm Förhandlingar, 56(3), 428–442.Google Scholar
  65. Nilsson, T. (1939). Cleithrum und Humerus der Stegocephalen und rezenten Amphibien, auf Grund neuer Funde von Plagiosaurus depressus Jaekel. Lunds Universitets Årsskrift N. F., 35, 1–39.Google Scholar
  66. Nilsson, T. (1946). A new find of Gerrothorax rhaeticus Nilsson a plagiosaurid from the Rhaetic of Scania. Lunds Universitets Årsskrift N. F., 42, 1–42.Google Scholar
  67. O’Keefe, F. R. (2004). Preliminary description and phylogenetic position of a new plesiosaur (Reptilia: sauropterygia) from the Toarcian of Holzmaden. Germany. Journal of Paleontology, 78(5), 973–988.Google Scholar
  68. Olsen, R. (1951). Size relations in the limb bones of Buettneria perfecta. Journal of Paleontology, 25(4), 520–524.Google Scholar
  69. Pawley, K., & Warren, A. (2005). A terrestrial stereospondyl from the Lower Triassic of South Africa: the postcranial skeleton of Lydekkerina huxleyi (Amphibia: Temnospondyli). Paleontology, 48(2), 281–298.Google Scholar
  70. Pyenson, N. D., Kelley, N. P., & Parham, J. F. (2014). Marine tetrapod macroevolution: physical and biological drivers on 250 Ma of invasions and evolution in ocean ecosystems. Palaeogeography, Palaeoclimatology, Palaeoecology, 400, 1–8.Google Scholar
  71. Quenstedt, F. A. (1850). Die Mastodonsaurier aus dem grünen Keupersandstein Württemberg’s sind Batrachier. Tübingen: Laupp and Siebeck.Google Scholar
  72. Rackoff, J. S. (1980). The origin of the tetrapod limb and the ancestry of tetrapods. In A. L. Panchen (Ed.). The Terrestrial Environment and the Origin of Land Vertebrates, Systematic Association, Special Volume, 15: 255–292.Google Scholar
  73. Ray, S., Mukherjee, D., & Bandyopadhyay, S. (2009). Growth patterns of fossil vertebrates as deduced from bone microstructure: case studies from India. Journal of Biosciences, 34, 661–672.Google Scholar
  74. Romer, A. S. (1956). Osteology of the reptiles. Chicago: University of Chicago Press.Google Scholar
  75. Sanchez, S., de Ricqlès, A., Schoch, R. R., & Steyer, J. S. (2010a). Developmental plasticity of limb bone microstructural organization in Apateon: histological evidence of paedomorphic conditions in branchiosaurs. Evolution and Development, 12(3), 315–328.Google Scholar
  76. Sanchez, S., Germain, D., de Ricqlès, A., Abourachid, A., Goussard, F., & Tafforeau, P. (2010b). Limb-bone histology of temnospondyls: implications for understanding the diversification of palaeoecologies and patterns of locomotion of Permo-Triassic tetrapods. Journal of Evolutionary Biology, 23(10), 2076–2090.Google Scholar
  77. Sanchez, S., Steyer, J. S., Schoch, R. R., & de Ricqlès, A. (2010c). Palaeoecological and palaeoenvironmental influences revealed by long-bone palaeohistology: the example of the Permian branchiosaurid Apateon. Geological Society, London, Special Publications, 339, 139–149.Google Scholar
  78. Sanchez, S., & Schoch, R. R. (2013). Bone histology reveals a high environmental and metabolic plasticity as a successful evolutionary strategy in a long-lived homeostatic Triassic temnospondyl. Evolutionary Biology, 40(4), 627–647.Google Scholar
  79. Sander, P. M., Wintrich, T., Schwermann, A. H., & Kindlimann, R. (2016). Die paläontologische Grabung in der Rhät-Lias-Tongrube der Fa. Lücking bei Warburg-Bonenburg (Kr. Höxter) im Frühjahr 2015. Geologie und Paläontologie in Westfalen, 88, 11–37.Google Scholar
  80. Säve-Söderbergh, G. (1935). On the dermal bones of the head in labyrinthodont stegocephalians and primitive reptilia: with special reference to Eotriassic stegocephalians from East Greenland. Meddelelser om Grønland, 98, 1–211.Google Scholar
  81. Sawin, H. (1945). Amphibians from the Dockum Triassic of Howard County, Texas. University of Texas Publication, 4401, 361–399.Google Scholar
  82. Schoch, R. R. (2008). The Capitosauria (Amphibia): characters, phylogeny, and stratigraphy. Palaeodiversity, 1, 189–226.Google Scholar
  83. Schoch, R. R. (2013). The evolution of major temnospondyl clades: an inclusive phylogenetic analysis. Journal of Systematic Palaeontology, 11(6), 673–705.Google Scholar
  84. Schoch, R. R. (2014). Amphibian evolution: the life of early land vertebrates. New York: Wiley.Google Scholar
  85. Schoch, R. R., & Milner, A. R. (2000). Stereospondyli. Encyclopedia of palaeoherpetology Part 3B. Munich: Verlag Dr. Friedrich Pfeil.Google Scholar
  86. Schwermann, A. H. (2016). Über den Nachweis von Lepagia gaumensis (Eucynodonta incertae sedis) aus dem Rhät (Trias) von Warburg-Bonenburg (Kr. Höxter). Geologie und Paläontologie in Westfalen, 88, 35–44.Google Scholar
  87. Sengupta, D. P. (1995). Chigutisaurid temnospondyls from the Late Triassic of India and a review of the family Chigutisauridae. Palaeontology, 38, 313–339.Google Scholar
  88. Sengupta, D. P. (2002). Indian metoposaurid amphibians revised. Paleontological Research, 6(1), 41–65.Google Scholar
  89. Shishkin, M. A. (1964). Suborder Stereospondyli. In Y. A. Orlov (Ed.), Amphibia, Reptilia, Aves (pp. 83–122). Osnovy Paleontologii. [in Russian]Google Scholar
  90. Shishkin, M. A. (1991). A Late Jurassic labyrinthodont from Mongolia. Paleontological Journal, 1991, 78–91.Google Scholar
  91. Spielmann, J. A., & Lucas, S. G. (2012). Tetrapod fauna of the Upper Triassic Redonda Formation of east-central New Mexico: the characteristic assemblage of the Apachean land-vertebrate faunachron. New Mexico Museum of Natural History and Science Bulletin, 55, 1–119.Google Scholar
  92. Steyer, S. J., & Damiani, R. (2005). A giant brachyopoid temnospondyl from the Upper Triassic or Lower Jurassic of Lesoto. Bulletin de la Société Géologique de France, 176(3), 243–248.Google Scholar
  93. Steyer, J. S., Laurin, M., Castanet, J., & Ricqlès, A. (2004). First histological and skeletochronological data on temnospondyl growth: palaeoecological and palaeoclimatological implications. Palaeogeography, Palaeoclimatology, Palaeoecolgy, 206, 193–201.Google Scholar
  94. Storrs, G. W. (1994). Fossil vertebrate faunas of the British Rhaetian (latest Triassic). Zoological Journal of the Linnean Society, 112(1–2), 217–259.Google Scholar
  95. Sulej, T. (2007). Osteology, variability, and evolution of Metoposaurus, a temnospondyl from the Late Triassic of Poland. Palaeontologia Polonica, 64, 29–139.Google Scholar
  96. Sulej, T., & Majer, D. (2005). The temnospondyl amphibian Cyclotosaurus from the Upper Triassic of Poland. Palaeontology, 48(1), 157–170.Google Scholar
  97. Sulej, T., Wolniewicz, A., Bonde, N., Błażejowski, B., Niedźwiedzki, G., & Tałanda, M. (2014). New perspectives on the Late Triassic vertebrates of East Greenland: preliminary results of a Polish − Danish palaeontological expedition. Polish Polar Research, 35(4), 541–552.Google Scholar
  98. Szulc, J., Racki, G., Jewuła, K., & Środoń, J. (2015). How many Upper Triassic bone-bearing levels are there in Upper Silesia (southern Poland)? A critical overview of stratigraphy and facies. Annales Societatis Geologorum Poloniae, 85(4), 587–626.Google Scholar
  99. Teschner, E. M., Sander, P. M., & Konietzko-Meier, D. (2018). Variability of growth pattern observed in Metoposaurus krasiejowensis humeri and its biological meaning. Journal of Iberian Geology, 44, 99–111.Google Scholar
  100. Vajda, V., & Wigforss-Lange, J. (2009). Onshore Jurassic of Scandinavia and related areas. GFF, 131, 5–23.Google Scholar
  101. Vickers-Rich, P. (1996). Early Cretaceous polar tetrapods from the great southern rift valley, southeastern Australia. Memoris-Queensland Museum, 39, 719–724.Google Scholar
  102. Warren, A. (1977). Jurrasic labyrinthodont. Nature, 265, 436–437.Google Scholar
  103. Warren, A., & Hutchinson, M. N. (1983). The last labyrinthodont? A new brachyopoid (Amphibia, Temnospondyli) from the Early Jurassic Evergreen Formation of Queensland, Australia. Philosophical Transactions of the Royal Society of London B, 303, 1–62.Google Scholar
  104. Warren, A., Kool, L., Cleeland, M., Rich, T. H., & Rich, P. V. (1991). Early Cretaceous labyrinthodont. An Alcheringa, 15(4), 327–332.Google Scholar
  105. Warren, A., & Marsicano, C. (1998). Revision of the Brachyopidae (Temnospondyli) from the Triassic of the Sydney, Carnarvon and Tasmania basins, Australia. Alcheringa, 22(4), 329–342.Google Scholar
  106. Warren, A., & Marsicano, C. (2000). A phylogeny of the Brachyopoidea (Temnospondyli, Stereospondyli). Journal of Vertebrate Paleontology, 20(3), 462–483.Google Scholar
  107. Warren, A., Rich, T. H., & Vickers-Rich, P. (1997). The last labyrinthodonts. Palaeontographica A, 247, 1–24.Google Scholar
  108. Warren, A., Rozefelds, A. C., & Bull, S. (2011). Tupilakosaur-like vertebrae in Bothriceps australis, an Australian brachyopid stereospondyl. Journal of Vertebrate Paleontology, 31(4), 738–753.Google Scholar
  109. Warren, A., & Snell, N. (1991). The postcranial skeleton of Mesozoic temnospondyl amphibians: a review. Alcheringa, 15(1), 43–64.Google Scholar
  110. Welles, S. P., & Estes, R. (1969). Hadrokkosaurus bradyi from the Upper Moenkopi Formation of Arizona with a review of brachyopid Labyrinthodonts. University of California Publications in Geological Sciences, 84, 1–61.Google Scholar
  111. Wintrich, T., Hayashi, S., Houssaye, A., Nakajima, Y., & Sander, P. M. (2017). A Triassic plesiosaurian skeleton and bone histology inform on evolution of a unique body plan. Science Advances, 3(12), e1701144.Google Scholar
  112. Witzmann, F., & Gassner, T. (2008). Metoposaurid and mastodonsaurid stereospondyls from the Triassic-Jurassic boundary of Portugal. Alcheringa, 32(1), 37–51.Google Scholar
  113. Witzmann, F., Sachs, S., & Nyhuis, C. (2016). A new species of Cyclotosaurus (Stereospondyli, Capitosauria) from the Late Triassic of Bielefeld, NW Germany, and the intrarelationships of the genus. Fossil Record, 19(2), 83–100.Google Scholar
  114. Woodward, A. S. (1909). On a new labyrinthodont from oil shale at Airly. Records of the Geological Survey of New South Wales, 8, 317–319.Google Scholar
  115. Wotzlaw, J.-F., Guex, J., Bartolini, A., Gallet, Y., Krystyn, L., McRoberts, C. A., et al. (2014). Towards accurate numerical calibration of the Late Triassic: high-precision U-Pb geochronology constraints on the duration of the Rhaetian. Geology, 42, 571–574.Google Scholar
  116. Zittel, K. A. von. (1887–1890). Handbuch der Paläontologie. 1. Abtheilung: Paläozoologie. 3rd vol. Vertebrata (Pisces, Amphibia, Reptilia, Aves). Munich: Oldenbourg.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Dorota Konietzko-Meier
    • 1
    • 2
    Email author
  • Jennifer D. Werner
    • 1
  • Tanja Wintrich
    • 1
  • P. Martin Sander
    • 1
  1. 1.Division of Paleontology, Steinmann InstituteUniversity of BonnBonnGermany
  2. 2.Institute of Biology, Opole UniversityOpolePoland

Personalised recommendations