Advertisement

Geological evidences of surface rupture related to a seventeenth century destructive earthquake in Betic Cordillera (SE Spain): constraining the seismic hazard of the Alhama de Murcia fault

  • José J. Martínez-Díaz
  • Jorge Alonso-Henar
  • Juan M. Insua-Arévalo
  • Carolina Canora
  • Julian García-Mayordomo
  • Emilio Rodríguez-Escudero
  • José A. Álvarez-Gómez
  • Marta Ferrater
  • María Ortuño
  • Eulalia Masana
Research Paper

Abstract

Constraining the date of the last major event occurred in a fault is of paramount importance in probabilistic seismic hazard assessment when time-dependent models are considered. Eight of the twelve destructive earthquakes occurred in the eastern Betic Cordillera since sixteenth century, are located less than 10 km away from the Alhama de Murcia fault (AMF). Up to now, it has not been identified any geological evidence on the ground surface to associate these events with the activity of specific fault sections of the AMF. In this work we present the first geological evidence of the catastrophic 1674 event occurred at Lorca (SE Spain). The excavations carried out at La Torrecilla Creek exposed archaeological remains from the Islamic period (VIII–XIII centuries in this region) affected by 55 ± 20 cm offset by the AMF fault. This event reached intensity VIII and produced 30 fatalities at Lorca for an estimated population of 7300 inhabitants. This supports the occurrence of earthquakes with surface rupture in the historical epoch on the Alhama de Murcia fault and reinforces the results obtained in previous paleoseismological work. The theoretical scenarios of maximum magnitudes and recurrence time obtained by combining this historical event with the fault slip rate allow us to conclude that the seismic hazard associated with maximum magnitude events in this section could be high. In addition, the static Coulomb stress transferred to the Góñar–Lorca section by the 2011 (Mw 5.2) Lorca earthquake may have significantly increased the hazard.

Keywords

Surface rupture Active fault Seismic hazard Betic Cordillera Alhama de Murcia fault 

Resumen

Asignar la fecha del último terremoto importante ocurrido en un segmento de falla es de gran importancia para las estimaciones probabilistas de peligrosidad sísmica, especialmente cuando se consideran modelos dependientes del tiempo. Ocho de los doce terremotos destructivos ocurridos en la Cordillera Bética Oriental desde el siglo XVI están localizados a menos de 10 km de la falla de Alhama de Murcia (AMF). Hasta el momento no se han identificado evidencias geológicas concretas en superficie que permitan asociar estos eventos a segmentos específicos de falla. En este trabajo presentamos la primera evidencia geológica del terremoto catastrófico de 1674 en Lorca (SE de España). Las excavaciones llevadas a cabo en la rambla de La Torrecilla han expuesto restos arqueológicos de época Árabe afectados por un desplazamiento de la AMF de 55±20 cm. Este evento alcanzó una intensidad VIII y produjo 30 víctimas mortales en Lorca, que en aquella época tenía 7300 habitantes. Esto apoya la ocurrencia de terremotos con ruptura superficial en época histórica en la falla de Alhama de Murcia y refuerza los resultados obtenidos en trabajos paleosismológicos previos. Los escenarios teóricos de magnitudes máximas e intervalos de recurrencia obtenidos, combinando este evento histórico con la velocidad de movimiento de la falla, nos lleva a concluir que la amenaza sísmica asociada con los eventos de magnitud máxima en esta sección de la AMF puede ser alta. Además, el esfuerzo de fractura de Coulomb transferido a la sección Góñar-Lorca por el terremoto de Lorca de Mw 5.2 de 2011 puede haber aumentado significativamente la amenaza.

Palabras clave

Ruptura en superficie Falla activa Amenaza sísmica Cordillera Bética Falla de Alhama de Murcia 

Notes

Acknowledgements

This research was funded by the Secretaria de Estado de Investigación, Desarrollo e Investigación (MINECO) projects INTERGEO and QUAKESTEP (CGL2017-83931-C3-1-P). We thank Raquel Martín (IGME), Stella Moreiras (Conicet, Argentina) and Octavi Gómez, Roberto Escudero y Albert Baguer (Barcelona University), for their support in the field work and Agustín Sánchez Sánchez from AIA Estudio for his support with the topographic data acquisition. We thanks the Confederacion Hidrografica del Segura for making it possible to work in the La Torrecilla fluvial channel. The authors thank Dr. Ivan Martín Rojas and an anonymous reviewer for constructive review that greatly increased the clarity and improved the manuscript.

Supplementary material

Resource 1: Video from aerial views taken with drone flying over the exhumed ditch. The excavation oblique to the ditch is the previous excavation dug to look for the fault plane rupture that unfortunately destroyed the section of the ditch in contact with the fault. The flight trajectory goes from north to south. (MP4 131879 kb)

Resource 2: Video from aerial views taken with drone flying over the exhumed ditch. The flight trajectory goes from south to north. (MP4 60928 kb)

References

  1. Aki, K. (1966). Generation and propagation of G-waves from the Niigata earthquake of June 16, 1964. II. Estimation of earthquake movement, release energy, and stress-strain drop from waves spectrum. Bulletin of Earthquake Research Institute, 44, 23–88.Google Scholar
  2. Anderson, J. G., Wesnousky, S. G., & Stirling, M. (1996). Earthquake size as a function of fault slip rate. Bulletin of the Seismological Society of America, 86, 683–690.CrossRefGoogle Scholar
  3. Argus, D. F., Gordon, R. G., DeMets, C., & Stein, S. (1989). Closure of the Africa–Eurasia–North American plate motion circuit and tectonics of the Gloria fault. Journal of Geophysical Research, 94(B5), 5585–5602.  https://doi.org/10.1029/JB094iB05p05585.CrossRefGoogle Scholar
  4. Armijo, R. (1977). La zona des failles Lorca–Totana (Cordillères Bétiques, Espagne). Etude tectonique et neotectonique, Thèse Illème cycle, Univ. Paris VII.Google Scholar
  5. Cabañas, L., Rivas-Medina, A., Martínez Solares, J. M., Gaspar-Escribano, J. M., Benito, B., Antón, R., et al. (2015). Relationships between Mw and other earthquake size parameters in the Spanish IGN seismic catalog. Pure and Applied Geophysics, 172(9), 2397–2410.  https://doi.org/10.1007/s00024-014-1025-2.CrossRefGoogle Scholar
  6. Chen, K. H., Bürgmann, R., & Nadeau, R. M. (2010). Triggering effect of M4–5 earthquakes on the earthquake cycle of repeating events at Parkfield, California. Bulletin of the Seismological Society of America, 100(2), 522–531.  https://doi.org/10.1785/0120080369.CrossRefGoogle Scholar
  7. De Larouziére, F. D., Bolze, J., Bordet, P., Hernández, J., Montenat, C., & Ott d’Estevou, P. (1988). The Betic segment of the lithospheric Trans-Alboran shear zone during the Late Miocene. Tectonophysics, 152, 41–52.CrossRefGoogle Scholar
  8. Echeverria, A., Khazaradze, G., Asensio, E., Garate, J., Martín-Dávila, J., & Suriñach, E. (2013). Crustal deformation in eastern Betics from CuaTeNeo GPS network. Tectonophysics, 608, 600–612.CrossRefGoogle Scholar
  9. Fernandes, R. M. S., Miranda, J. M., Meijninger, B. M. L., Bos, M. S., Noomen, R., Bastos, L., et al. (2007). Surface velocity field of the Ibero-Maghrebian segment of the Eurasia-Nubia plate boundary. Geophysical Journal International, 169(1), 315–324.  https://doi.org/10.1111/j.1365-246X.2006.03252.x.CrossRefGoogle Scholar
  10. Ferrater, M., Ortuño, M., Masana, E., Martínez-Díaz, J. J., Pallàs, R., & Perea, H. (2017). Lateral slip rate of Alhama de Murcia fault (SE Iberian Peninsula) based on a morphotectonic analysis: Comparison with paleoseismological data. Quaternary International, 451, 87–100.  https://doi.org/10.1016/j.quaint.2017.02.018.CrossRefGoogle Scholar
  11. Ferrater, M., Ortuño, M., Masana, E., Pallas, R., Perea, H., Baize, et al. (2016). Refining seismic parameters in low seismicity areas by 3D trenching: The Alhama de Murcia fault, SE Iberia. Tectonophysics, 680, 122–128.  https://doi.org/10.1016/j.tecto.2016.05.020.CrossRefGoogle Scholar
  12. García-Mayordomo, J. (2005). Caracterización y Análisis de la Peligrosidad Sísmica en el Sureste de España. Ph.D. Thesis, Universidad Complutense, Madrid, Spain. Universidad Complutense de Madrid.Google Scholar
  13. García-Mayordomo, J., Gaspar-Escribano, J. M., & Benito, B. (2007). Seismic hazard assessment of the Province of Murcia (SE Spain): Analysis of source contribution to hazard. Journal of Seismology, 11, 453–471.CrossRefGoogle Scholar
  14. García-Mayordomo, J., Insua-Arévalo, J. M., Martínez-Díaz, J. J., Jiménez-Díaz, A., Martín-Banda, R., Martín-Alfageme, S., et al. (2012). The Quaternary Active Faults Database of Iberia (QAFI v. 2.0). Journal of Iberian Geology, 38(1), 285–302.CrossRefGoogle Scholar
  15. IGN-UPM (2013). Actualización de mapas de peligrosidad sísmica de España. Madrid: Instituto Geográfico Nacional. ISBN 978-84-416-2685-0.Google Scholar
  16. Instituto Geográfico Nacional, IGN (2011). Informe del sismo de Lorca 2011 NE Lorca (Murcia), Madrid. http://www.ign.es/web/resources/sismologia/. Last Accessed Oct 2017.
  17. Instituto Geográfico Nacional, IGN (2017). The Spanish seismic catalogue. IGN-Instituto Geográfico Nacional. Catálogo Sísmico Nacional. http://www.ign.es. Last Accessed 4 Nov 2017.
  18. Insua-Arévalo, J. M., García-Mayordomo, J., Salazar, A., Rodríguez-Escudero, E., Martín-Banda, R., Álvarez-Gómez, J. A., et al. (2015). Paleoseismological evidence of Holocene activity of the Los Tollos Fault (Murcia, SE Spain): A lately formed Quaternary tectonic feature of the Eastern Betic Shear Zone. Journal of Iberian Geology, 41(3), 333–350.  https://doi.org/10.5209/rev_JIGE.2015.v41.n3.49948.CrossRefGoogle Scholar
  19. Kanamori, H. (1977). The energy release in great earthquakes. Journal Geophysical Research, 82, 2981–2987.  https://doi.org/10.1029/JB082i020p02981.CrossRefGoogle Scholar
  20. Lopez-Comino, J. A., Mancilla, F., Morales, J., & Stich, D. (2012). Rupture directivity of the 2011, Mw 5.2 Lorca earthquake (Spain). Geophysical Research Letters, 39, L03301.  https://doi.org/10.1029/2011GL050498.CrossRefGoogle Scholar
  21. Martín-Banda, R., García-Mayordomo, J., Insua-Arévalo, J. M., Salazar, A., Álvarez-Gómez, J. A., Rodríguez-Escudero, E., et al. (2016). New insights on the seismogenic potential of the Eastern Betic Shear Zone (SE Iberia): Quaternary activity and paleoseismicity of the SW segment of the Carrascoy Fault Zone. Tectonics, 35, 55–75.  https://doi.org/10.1002/2015TC003997.CrossRefGoogle Scholar
  22. Martínez-Cuevas, S., & Gaspar-Escribano, J. (2016). Reassessment of intensity estimates from vulnerability and damage distributions: The 2011 Lorca earthquake. Bulletin of Earthquake Engineering, 14, 2679–2703.CrossRefGoogle Scholar
  23. Martínez-Díaz, J. J., Béjar-Pizarro, M., Álvarez-Gómez, J. A., Mancilla, F. L., Stich, D., Herrera, G., et al. (2012a). Tectonic and seismic implications of an intersegment rupture. Tectonophysics, 546–547, 28–36.  https://doi.org/10.1016/j.tecto.2012.04.010.CrossRefGoogle Scholar
  24. Martínez-Díaz, J. J., Masana, E., & Ortuño, M. (2012b). Active tectonics of the Alhama de Murcia fault, Betic Cordillera, Spain. Journal of Iberian Geology, 38, 269–286.  https://doi.org/10.5209/rev_JIGE.2012.v38.n1.39218.CrossRefGoogle Scholar
  25. Martínez-Díaz, J. J., Insua-Arévalo, J. M., Tsige, M., Rodríguez-Escudero, E., Alonso-Henar, J., Crespo, J., et al. (2016). FAM-1 Borehole: First results from the scientific drilling of the Alhama de Murcia Fault, Betic Cordillera, Spain. GeoTemas, 16(2), 579–582.Google Scholar
  26. Martínez-Díaz, J. J., Masana, E., Hernández-Enrile, J. L., & Santanach, P. (2001). Evidence for coseismic events of recurrent prehistoric deformation along the Alhama de Murcia fault, southeastern Spain. Acta Geologica Hispanica, 36(3–4), 315–327.Google Scholar
  27. Martínez-Díaz, J. J., Ortuño-Candela, M., Masana, E., & García-Mayordomo J. (2015). Alhama de Murcia Fault: Góñar–Lorca segment (ES626). In: García-Mayordomo, et al. (Eds.), Quaternary active faults database of Iberia v.3.0—November 2015. Madrid: IGME. http://info.igme.es/QAFI.
  28. Martínez-Guevara, J. B. (1985). Sismicidad histórica de la Región de Murcia. IX Coloquio de Geógrafos Españoles. Murcia: A.G.E. Univ. de Murcia.Google Scholar
  29. Martínez-Martínez, J. M., & Azañón, J. M. (1997). Mode of extensional tectonics in the southeastern Betics (SE Spain): Implications for the tectonic evolution of the peri-Alborán orogenic system. Tectonics, 16, 205–225.  https://doi.org/10.1029/97TC0015.CrossRefGoogle Scholar
  30. Masana, E., Martínez-Díaz, J. J., Hernández-Enrile, J. L., & Santanach, P. (2004). The Alhama de Murcia fault (SE Spain), a seismogenic fault in a diffuse plate boundary: Seismotectonic implications for the Ibero-Maghrebian region. Journal of Geophysical Research, 109(B1), 1–17.  https://doi.org/10.1029/2002JB002359.CrossRefGoogle Scholar
  31. Mathews, M. V., Ellsworth, W. L., & Reasenberg, P. A. (2002). A Brownian model for recurrent earthquakes. Bulletin of the Seismological Society of America, 92(6), 2233–2250.  https://doi.org/10.1785/0120010267.CrossRefGoogle Scholar
  32. Montenat, C. (1973). Les Formations Néogènes du Levant Espagnol. Ph.D. Thesis, Orsay, France, University of Paris.Google Scholar
  33. Muñoz-Clarés, M., Fernández-Carrascosa, M., Alcolea-López, M. O., Arcas-Navarro, M. C., Arcas-Ruiz, N., Caro del Vas, P., et al. (2012). Sismicidad histórica y documentación municipal: El caso de Lorca. Boletin Geologico y Minero, 123(4), 415–429.Google Scholar
  34. Quirós, L. (2017). Modelizaciones y análisis de sensibilidad en la evaluación del riesgo sísmico a escala urbana. Aplicación a la ciudad de Lorca (in spanish). Ph.D. thesis, Universidad Politécnica de Madrid, Madrid, Spain.Google Scholar
  35. Rodríguez-Escudero, E., Martínez-Díaz, J. J., Álvarez-Gómez, J. A., Insua-Arévalo, J. M., & Capote, R. (2014). Tectonic setting of the recent damaging seismic series in the Southeastern Betic Cordillera, Spain. Bulletin of Earthquake Engineering, 12(5), 1831–1854.  https://doi.org/10.1007/s10518-013-9551-3.CrossRefGoogle Scholar
  36. Rodríguez-Fernández, J., Azor, A., & Azañon, J. M. (2012). The Betic intramontane basins (SE Spain): Stratigraphy, subsidence, and tectonic history. In C. Busby & A. Azor (Eds.), Tectonics of sedimentary basins: Recent advances (Vol. 23, pp. 461–479). Hoboken: Blackwell Publishing Ltd.CrossRefGoogle Scholar
  37. Roldán-Cañas, J., & Moreno-Pérez, M. F. (2007). La ingeniería y la gestión del agua de riego en Al-Andalus. Ingeniería del Agua, 14, 223–236.CrossRefGoogle Scholar
  38. Serpelloni, E., Vannucci, G., Pondrelli, S., Argnani, A., Casula, G., Anzidei, M., et al. (2007). Kinematics of the western Africa-Eurasia plate boundary from focal mechanisms and GPS data. Geophysical Journal International, 169(3), 1180–1200.  https://doi.org/10.1111/j.1365-246X.2007.03367.x.CrossRefGoogle Scholar
  39. Silva, P. G., Bardají, T., Calmel-Avila, M., Goy, J. L., & Zazo, C. (2008). Transition from alluvial to fluvial systems in the Guadalentín depression (SE Spain) during the Holocene: Lorca fan versus Guadalentín river. Geomorphology, 100(1–2), 140–153.CrossRefGoogle Scholar
  40. Stein, R. S. (1999). The role of stress transfer in earthquake occurrence. Nature, 402, 605–609.CrossRefGoogle Scholar
  41. Stirling, M. W., Gerstenberger, M. C., Litchfield, N. J., McVerry, G. H., Smith, W. D., Pettinga, J., et al. (2008). Seismic hazard of the Canterbury region, New Zealand: New earthquake source model and methodology. Bulletin of the New Zealand Society for Earthquake Engineering, 41, 51–67.Google Scholar
  42. Stirling, M. W., Goded, T., Berryman, K. R., & Litchfield, N. J. (2013). Selection of earthquake scaling relationships for seismic hazard analysis. Bulletin of the Seismological Society of America, 103(6), 2993–3011.  https://doi.org/10.1785/0120130052.CrossRefGoogle Scholar
  43. Stucchi, M., Rovida, A., Gomez Capera, A. A., Alexandre, P., Camelbeeck, T., Demircioglu, M. B., et al. (2013). The SHARE European Earthquake catalogue (SHEEC) 1000–1899. Journal of Seismology, 17(2), 524–544.  https://doi.org/10.1007/s10950-012-9335-2.CrossRefGoogle Scholar
  44. Wesnousky, S. G. (1986). Earthquakes, quaternary faults, and seismic hazard in California. Journal of Geophysical Research, 91(B12), 12587–12631.CrossRefGoogle Scholar
  45. Wesnousky, S. G. (2008). Displacement and geometrical characteristics of earthquake surface ruptures: Issues and implications for seismic-hazard analysis and the process of earthquake rupture. Bulletin of the Seismological Society of America, 98, 1609–1632.CrossRefGoogle Scholar
  46. Ortuño, M., Masana, E., García-Meléndez, E., Martínez-Díaz, J. J., Stepancikova, P., Cunha, P., et al. (2012). An exceptionally long paleoseismic record of a slow-moving fault: The Alhama de Murcia fault (Eastern Betic Shear Zone, Spain). Geological Society of American Bulletin, 124(9–10), 1474–1494.  https://doi.org/10.1130/b30558.1.CrossRefGoogle Scholar
  47. Yen, Y. T., & Ma, K. F. (2011). Source-scaling relationship for M 4.6–8.1 earthquakes, specifically for earthquakes in the collision zone of Taiwan. Bulletin of the Seismological Society of America, 101, 464–481.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • José J. Martínez-Díaz
    • 1
    • 5
  • Jorge Alonso-Henar
    • 1
  • Juan M. Insua-Arévalo
    • 1
  • Carolina Canora
    • 2
  • Julian García-Mayordomo
    • 3
  • Emilio Rodríguez-Escudero
    • 2
  • José A. Álvarez-Gómez
    • 1
  • Marta Ferrater
    • 4
  • María Ortuño
    • 4
  • Eulalia Masana
    • 4
  1. 1.TecTact Group, Departamento de Geodinámica, Estratigrafía y PaleontologíaUniversidad Complutense de MadridMadridSpain
  2. 2.Dept. Geología y Geoquímica, Facultad de CienciasUniversidad Autónoma de MadridMadridSpain
  3. 3.Instituto Geológico y Minero de EspañaMadridSpain
  4. 4.Risnat Group and Geomodel Institute, Departament de Dinàmica de la Terra i l’OceàUniversitat de BarcelonaBarcelonaSpain
  5. 5.Instituto de Geociencias IGEO (CSIC,UCM)MadridSpain

Personalised recommendations