Journal of Iberian Geology

, Volume 45, Issue 2, pp 353–363 | Cite as

Can undertracks show higher morphologic quality than surface tracks? Remarks on large amphibian tracks from the Early Permian of France

  • Lorenzo MarchettiEmail author
Research Paper


In tetrapod ichnology, the morphologic quality of tracks is widely termed preservation, including both formational and post-formational processes; this study follows this interpretation. The term undertrack is generally referred to poorly-preserved tracks found on the underlying layers of the actual trampled surface, which usually shows better-preserved tracks. This study, using the most recent concepts and techniques in tetrapod ichnology, aims to give a significant contribution to the understanding of the undertrack formation. The studied material includes some large temnospondyl tracks from the Early Permian of the Lodève Basin (France), a trackway type material of Opisthopus and a pes-manus couple type material of Laoporoides (nomen vanum), both assigned to Limnopus. These specimens show a peculiar feature: manual footprints that are more distinct, more complete, deeper and classifiable (better-preserved) on the underlying layers (up to two underlying layers) compared to the actual trampled surface, which shows shallower, indistinct and unclassifiable manual tracks (poorly-preserved). Pedal tracks on the actual trampled surface are deformed and thus unclassifiable (poorly-preserved), and nearly non-impressed in the underlying layers. This is probably the result of the trackmaker differential weight of manual and pedal impressions on water-saturated fine-grained laminated sediments. This is the first convincing fossil evidence of a better preservation of the undertracks in certain substrate conditions, confirming what is known from laboratory experiments. As a consequence, caution is suggested in the interpretation of undertracks and surface tracks, and the term undertrack should not be used as a synonym for poorly-preserved tetrapod tracks, although these terms often coincide.


Amphibian tracks Taphonomy Preservation Undertracks 


En icnología de tetrápodos, la calidad morfológica de las pisadas es ampliamente denominada en base a la preservación, incluyendo ambos procesos de formación y post-formación; este estudio sigue esta interpretación. El término subimpresión se refiere generalmente a pisadas pobremente preservadas encontradas en capas subyacentes de la actual superficie donde se hallan las icnitas, que usualmente muestran pisadas mejor preservadas. Este estudio, usando los conceptos y técnicas más actuales en icnología de tetrápodos, persigue dar una notable contribución a la compresión de la formación de la subimpresión. El material estudiado incluye algunas pisadas de grandes temnospóndilos del Pérmico Inferior de la Cuenca de Lodève (Francia), el rastro de material tipo de Opisthopus y una pareja de pie-mano del material tipo de Laoporoides (nomen vanum), ambos asignados a Limnopus. Estos especímenes muestran un carácter peculiar: pisadas de manos que son más claras, más completas, profundas y clasificables (mejor preservadas) en las capas subyacentes (hasta dos capas subyacentes) comparadas con las superficies actuales con pisadas, las cuales muestran pisadas de manos más superficiales, menos claras y inclasificables (pobremente preservadas). Las icnitas de pies en la superficie actual con pisadas están deformadas y, consecuentemente, inclasificables (pobremente preservadas), y prácticamente no impresas en las capas subyacentes. Este hecho es probablemente el resultado de la diferencia de peso del productor entre las impresiones de mano y pie en sedimentos laminados saturados de agua y de grano fino. Este es la primera clara evidencia fosil de la mejor preservación de las subimpresiones en ciertas condiciones de sustratos, confirmando lo que era conocido a través de experimentos de laboratorio. Como consecuencia, se sugiere precaución en la interpretación de las subimpresiones y las superficies con pisadas, y el término subimpresión no debería ser usado como sinónimo de pisadas de tetrápodos pobremente preservadas, aunque estos términos a veces coinciden.

Palabras clave

pisadas de anfibio tafonomía preservación subimpresiones 



I would like to thank N.E. Jalil (National Museum of Natural History, Paris) L. Marivaux S. Jiquel (University of Montpellier) for the access to the collection and help during my study; the editors of the volume J.S. Steyer and J. Fortuny; E. Mujal, G. Gand and an anonymous reviewer for the useful discussion. This study was financed by the Alexander von Humboldt Foundation.

Supplementary material

41513_2018_80_MOESM1_ESM.pdf (283 kb)
Supplementary material 1 (PDF 282 kb)


  1. Belvedere, M., Bennett, M. R., Marty, D., Budka, M., Reynolds, S. C., & Bakirov, R. (2018). Stat-tracks and mediotypes: powerful tools for modern ichnology based on 3D models. PeerJ, 6, e4247.CrossRefGoogle Scholar
  2. Bertling, M., Braddy, S. J., Bromley, R. G., Demathieu, G. R., Genise, J., Mikuláš, R., et al. (2006). Names for trace fossils: a uniform approach. Lethaia, 39(3), 265–286.CrossRefGoogle Scholar
  3. Boy, J. A., & Fichter, J. (1988). Zur Stratigraphie des höheren Rotliegend im Saar-Nahe-Becken (Unter-Perm; SW-Deutschland) und seiner Korrelation mit anderen Gebieten. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 176(3), 331–394.Google Scholar
  4. Castanera, D., Belvedere, M., Marty, D., Paratte, G., Lapaire-Cattin, M., Lovis, C., et al. (2018). A walk in the maze: variation in Late Jurassic tridactyl dinosaur tracks—a case study from the Late Jurassic of the Swiss Jura Mountains (NW Switzerland). PeerJ PrePrints. Scholar
  5. Ellenberger, P. (1983). On the ichnological zonation of the Lower Permian (Autunian) in the Lodeve Basin (Herault, France). Comptes Rendus de l´Academie des Sciences Paris, Serie II, 297, 631–636.Google Scholar
  6. Falkingham, P. L., & Gatesy, S. M. (2014). The birth of a dinosaur footprint: subsurface 3D motion reconstruction and discrete element simulation reveal track ontogeny. Proceedings of the National Academy of Sciences, 111(51), 18279–18284.CrossRefGoogle Scholar
  7. Gand, G. (1985). Significations paléobiologique et stratigraphique de Limnopus zeilleri dans la partie nord du bassin de St Affrique. Geobios, 18(2), 215–227.CrossRefGoogle Scholar
  8. Gand, G. (1988). Les traces de Vertébrés tétrapodes du Permien français (paléontologie, stratigraphie, paléoenvironnements. Doctoral dissertation, Dijon.Google Scholar
  9. Gand, G., & Durand, M. (2006). Tetrapod footprint ichno-associations from French Permian basins. Comparisons with other Euramerican ichnofaunas. Geological Society, London, Special Publications, 265(1), 157–177.CrossRefGoogle Scholar
  10. Gatesy, S. M., & Falkingham, P. L. (2017). Neither bones nor feet: track morphological variation and ‘preservation quality’. Journal of Vertebrate Paleontology, 37(3), e1314298.CrossRefGoogle Scholar
  11. Gatesy, S. M., Middleton, K. M., Jenkins, F. A., Jr., & Shubin, N. H. (1999). Three-dimensional preservation of foot movements in Triassic theropod dinosaurs. Nature, 399(6732), 141.CrossRefGoogle Scholar
  12. Haubold, H. (1996). Ichnotaxonomie und Klassifikation von Tetrapodenfährten aus dem Perm. Hallesches Jahrbuch für Geowissenschaften B, 18, 23–88.Google Scholar
  13. Haubold, H., Hunt, A. P., Lucas, S. G., & Lockley, M. G. (1995). Wolfcampian (Early Permian) vertebrate tracksfrom Arizona and New Mexico. New Mexico Museum of Natural History and Science Bulletin, 6, 135–165.Google Scholar
  14. Heyler, D., & Lessertisseur, J. (1963). Pistes de Tétrapodes permiens dans la région de Lodève, Hérault. Memoires du Museum National d´Histoire Naturelle Serie C, 9, 9–220.Google Scholar
  15. International Commission on Zoological Nomenclature. (1999). International code of zoological nomenclature (4th ed.). London: International Trust for Zoological Nomenclature.Google Scholar
  16. Klein, H., Lagnaoui, A., Gierliński, G. D., Saber, H., Lallensack, J. N., Oukassou, M., et al. (2018). Crocodylomorph, turtle and mammal tracks in dinosaur-dominated Middle–? Upper Jurassic and mid-Cretaceous ichnoassemblages of Morocco. Palaeogeography, Palaeoclimatology, Palaeoecology, 498, 39–52.CrossRefGoogle Scholar
  17. Lallensack, J. N., Klein, H., Milàn, J., Wings, O., Mateus, O., & Clemmensen, L. B. (2017). Sauropodomorph dinosaur trackways from the Fleming Fjord Formation of East Greenland: evidence for Late Triassic sauropods. Acta Palaeontologica Polonica, 62(4), 833–843.Google Scholar
  18. Leonardi, G. (1987). Glossary and manual of tetrapod footprint palaeoichnology. Brasilia: Departamento Nacionalde Produção Mineral.Google Scholar
  19. Lockley, M. G., Houck, K. J., Matthews, N., McCrea, R. T., Xing, L., Tsukui, K., et al. (2018). New theropod display arena sites in the Cretaceous of North America: clues to distributions in space and time. Cretaceous Research, 81, 9–25.CrossRefGoogle Scholar
  20. Lopez, M., Gand, G., Garric, J., & Galtier, J. (2005). Playa environments in the Lodeve Permian basin and the Triassic cover (Languedoc-France). Permian and Triassic Playas Symposium, Pre-Symposium Field Trip Guidebook, Photolabo Hassler, Fontainebleau.Google Scholar
  21. Lopez, M., Gand, G., Garric, J., Körner, F., & Schneider, J. (2008). The playa environments of the Lodève Permian basin (Languedoc-France)/Los ambientes de playa de la Cuenca de Lòdeve (Languedoc-Francia). Journal of Iberian Geology, 34(1), 29.Google Scholar
  22. Marchetti, L., Avanzini, M., & Conti, M. A. (2013). Hyloidichnus bifurcatus Gilmore, 1927 and Limnopus heterodactylus (King, 1845) from the Early Permian of Southern Alps (N Italy): a new equilibrium in the ichnofauna. Ichnos, 20(4), 202–217.CrossRefGoogle Scholar
  23. Marchetti, L., Ronchi, A., Santi, G., & Voigt, S. (2015). The Gerola Valley site (Orobic Basin, Northern Italy): a key for understanding late early Permian tetrapod ichnofaunas. Palaeogeography, Palaeoclimatology, Palaeoecology, 439, 97–116.CrossRefGoogle Scholar
  24. Marchetti, L., Mujal, E., & Bernardi, M. (2017a). An unusual Amphisauropus trackway and its implication for understanding seymouriamorph locomotion. Lethaia, 50(1), 162–174.CrossRefGoogle Scholar
  25. Marchetti, L., Tessarollo, A., Felletti, F., & Ronchi, A. (2017b). Tetrapod footprint paleoecology: behavior, taphonomy and ichnofauna disentangled. a case study from the Lower Permian of the Southern Alps (italy). Palaios, 32(8), 506–527.CrossRefGoogle Scholar
  26. Marchetti, L., Voigt, S., & Klein, H. (2017c). Revision of Late Permian tetrapod tracks from the Dolomites (Trentino-Alto Adige, Italy). Historical Biology. Scholar
  27. Marsh, O. C. (1894). I.—Footprints of vertebrates in the coal-measures of Kansas. Geological Magazine, 1(8), 337–339.CrossRefGoogle Scholar
  28. Marty, D., Strasser, A., & Meyer, C. A. (2009). Formation and taphonomy of human footprints in microbial mats of present-day tidal-flat environments: implications for the study of fossil footprints. Ichnos, 16(1–2), 127–142.CrossRefGoogle Scholar
  29. Michel, L. A., Tabor, N. J., Montañez, I. P., Schmitz, M. D., & Davydov, V. I. (2015). Chronostratigraphy and paleoclimatology of the Lodève Basin, France: evidence for a pan-tropical aridification event across the Carboniferous-Permian boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 430, 118–131.CrossRefGoogle Scholar
  30. Milàn, J., & Bromley, R. G. (2006). True tracks, undertracks and eroded tracks, experimental work with tetrapod tracks in laboratory and field. Palaeogeography, Palaeoclimatology, Palaeoecology, 231(3–4), 253–264.CrossRefGoogle Scholar
  31. Milàn, J., & Bromley, R. G. (2008). The impact of sediment consistency on track and undertrack morphology: experiments with emu tracks in layered cement. Ichnos, 15, 18–24.Google Scholar
  32. Mujal, E., Fortuny, J., Oms, O., Bolet, A., Galobart, À., & Anadon, P. (2016). Palaeoenvironmental reconstruction and early Permian ichnoassemblage from the NE Iberian Peninsula (Pyrenean Basin). Geological Magazine, 153(4), 578–600.CrossRefGoogle Scholar
  33. Schneider, J. W., Körner, F., Roscher, M., & Kroner, U. (2006). Permian climate development in the northern peri-Tethys area—the Lodève basin, French Massif Central, compared in a European and global context. Palaeogeography, Palaeoclimatology, Palaeoecology, 240(1), 161–183.CrossRefGoogle Scholar
  34. Schoch, R. R. (2014). Amphibian evolution: the life of early land vertebrates. Hoboken: Wiley.CrossRefGoogle Scholar
  35. Vila, B., Oms, O., & Galobart, À. (2005). Manus-only titanosaurid trackway from Fumanya (Maastrichtian, Pyrenees): further evidence for an underprint origin. Lethaia, 38(3), 211–218.CrossRefGoogle Scholar
  36. Voigt, S. (2005). Die Tetrapodenichnofauna des kontinentalen Oberkarbon und Perm im ThüringerWald—Ichnotaxonomie, Paläoökologie und Biostratigraphie (p. 179). Göttingen, Germany: Cuvillier Verlag.Google Scholar
  37. Voigt, S., Berman, D. S., & Henrici, A. C. (2007). First well-established track-trackmaker association of Paleozoic tetrapods based on Ichniotherium trackways and diadectid skeletons from the Lower Permian of Germany. Journal of Vertebrate Paleontology, 27(3), 553–570.CrossRefGoogle Scholar
  38. Voigt, S., & Haubold, H. (2000). Analyse zur Variabilität der Tetrapodenfährte Ichniotherium cottae aus dem Tambacher Sandstein (Rotliegend, U-Perm, Thüringen). Hallesches Jahrbuch Geowissenschaften B, 22, 17–58.Google Scholar
  39. Voigt, S., & Lucas, S. G. (2018). Outline of a Permian tetrapod footprint ichnostratigraphy. Geological Society, London, Special Publications, 450(1), 387–404.CrossRefGoogle Scholar
  40. Xing, L., Lockley, M. G., Klein, H., Zeng, R., Cai, S., Luo, X., et al. (2018). Theropod assemblages and a new ichnotaxon Gigandipus chiappei ichnosp. nov. from the Jiaguan Formation, Lower Cretaceous of Guizhou Province, China. Geoscience Frontiers. Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Urweltmuseum GEOSKOP/Burg Lichtenberg (Pfalz)ThallichtenbergGermany

Personalised recommendations