Skip to main content

Advertisement

Log in

Short-term eustatic sea-level changes during the Cenomanian–Turonian Supergreenhouse interval in the Kopet-Dagh Basin, NE Tethyan realm

  • Research Paper
  • Published:
Journal of Iberian Geology Aims and scope Submit manuscript

Abstract

Introduction

The Cenomanian-Turonian boundary in the Koppeh-Dagh Basin (NE Iran) have spread out from west to east. The purpose of this study is to record sea-level changes and palaeo-climate history of the late Cenomanian-early Turonian interval in the eastern part of the Kopet-Dagh Basin (Taherabad section) using geochemical anomalies and minerals signatures.

Methods

Two geochemical proxies including ∆13C (pCO2 index) and δ18O have been analyzed for palaeo-climate interpretation. Also, detrital index and kaolinite values were measured to determine humidity and chemical weathering in the study section.

Results

Our results indicate variations in palaeo-climate indices including two cool intervals surrounded by warm periods in the study succession. The δ13C curve represents two main positive peaks in the cool intervals at the upper part of Rotalipora cushmani and middle part of Whiteinella archaeocretacea biozones.

Conclusion

We conclude that according to aquifer-eustasy hypothesis the cool and dryer intervals, which are characterized by decreased detrital input and kaolinite contents in the studied section, are associated with aquifer discharge and sea-level rise. Inversely, the warm and humid episodes are consistent with increased precipitation and chemical weathering, resulting aquifer charge and sea-level fall. The sequence boundaries in the studied succession are positioned at upper part of R. cushmani and middle part of W. archaeocretacea zones and can be correlated with Ce5 and Tu1 global events.

Resumen

Introducción

Este trabajo considera el límite Cenomaniense-Turoniense en la Cuenca Kopet-Dagh (NE Irán). El objetivo reconstruir los cambios del nivel del mar y del paleoclima en el intervalo Cenomaniense terminal-Turoniense basal en la parte oriental de la cuenca (sección Taherebab) a partir de cambios geoquímicos y menoralógicos.

Métodos

La reconstrucción paleoclimática se han basado en indicadores geoquímicos de tipo isotópico: ∆13C (índice de pCO 2 ) y δ18O. Además, se han usado el índice de componente detrítico y los valores de caolinita para estimar valores de paleohumedad y meteorización química.

Resultados

Las variaciones de los indicadores paleoclimáticos en la sección estudiada permiten reconocer dos intervalos relativamente fríos limitados por periodos más cálidos. La curva de δ13C muestra dos máximos positivos principales que corresponden con los intervalos fríos y se localizan respectivamente en la parte superior de la biozona de Rotalipora cushmani y en la parte media de la biozona Whiteinella archaeocretacea.

Conclusión

De acuerdo con la hipótesis acuífero-eustática, los intervalos más fríos y secos, caracterizados por la disminución del contenido detrítico y en caolinita en las facies, están asociados con el descenso del volumen de agua de los acuíferos y el consiguiente ascenso del nivel del mar. Inversamente, los episodios más cálidos y húmedos están relacionados con el aumento de precipitaciones y la meteorización química, resultando en un incremento del volumen de agua almacenado en los acuíferos y en la disminución del nivel del mar. Los límites de secuencia en la sección estudiada se sitúan en la en la parte superior de la biozona de Rotalipora cushmani y en la parte media de la biozona Whiteinella archaeocretacea, y pueden relacionarse con los eventos globales Ce5 y Tu1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Afshar-Harb, A. (1994). The geology of the Koppeh Dagh, Iran. Tehran: Geological survey of Iran.

    Google Scholar 

  • Alley, N. F., & Frakes, L. A. (2003). First known Cretaceous glaciation: Livingston Tillite Member of the Cadnaowie Formation, South Australia. Australian Journal of Earth Sciences, 50(2), 139–144.

    Article  Google Scholar 

  • Angiolini, L., Gaetani, M., Muttoni, G., Stephanson, M. H., & Zanchi, A. (2007). Tethyan oceanic currents and climate gradients 300 m.y. ago. Geology, 35, 1071–1074.

    Article  Google Scholar 

  • Arthur, M. A., Dean, W. E., & Pratt, L. M. (1988). Geochemical and climatic effects of increased marine organic carbon burial at the Cenomanian/Turonian boundary. Nature, 335, 714–717.

    Article  Google Scholar 

  • Arthur, M. A., Schlanger, S. O., & Jenkyns, H. C. (1987). The Cenomanian–Turonian oceanic anoxic event. II. Palaeoceanographic controls on organic-matter production and preservation. In J. Brooks & A. J. Fleet (Eds.), Marine petroleum source rocks (pp. 401–420). London: Geological Society Special Publication.

    Google Scholar 

  • Barrier, E., & Vrielynck, B. (2008). Map 6: Cenomanian (99.6–93.5 Ma). In E. Barrier & B. Vrielynck (Eds.), Palaeotectonic maps of the middle east-tectono-sedimentary-palinspastic maps from the late Norian to Pliocene. Paris: Commission for the Geological Map of the World (CGMW/CCGM).

    Google Scholar 

  • Bornemann, A., Norris, R. D., Friedrich, O., Beckmann, B., Schouten, S., Sinninghe Damsté, J., et al. (2008). Isotopic evidence for glaciation during the Cretaceous Supergreenhouse. Science, 319(5860), 189–192.

    Article  Google Scholar 

  • Brunet, M. F., Korotaev, M. V., Ershov, A. V., & Nikishin, A. M. (2003). The South Caspian Basin: A review of its evolution from subsidence modelling. Sedimentary Geology, 156, 119–148.

    Article  Google Scholar 

  • Canfield, D. E. (1994). Factors influencing organic carbon preservation in marine sediments. Chemical Geology, 114, 315–329.

    Article  Google Scholar 

  • Caron, M., Dall’Agnolo, S., Accarie, H., Barrera, E., Kauffman, E. G., Amedro, F., et al. (2006). High-resolution stratigraphy of the Cenomanian/Turonian boundary interval at Pueblo (USA) and wadi Bahloul (Tunisia): Stable isotope and bio-events correlation. Geobios, 39, 171–200.

    Article  Google Scholar 

  • Catuneanu, O., & Zecchin, M. (2013). High-resolution sequence stratigraphy of clastic shelves II: Controls on sequence development. Marine and Petroleum Geology, 39, 26–38.

    Article  Google Scholar 

  • Cetean, C. G., Balc, R., Kaminski, M. A., & Filipescu, S. (2011). Integrated biostratigraphy and palaeoenvironments of an upper Santonian-upper Campanian succession from the southern part of the Eastern Carpathians, Romania. Cretaceous Research, 32, 575–590.

    Article  Google Scholar 

  • Chamley, H. (1989). Clay sedimentology. Berlin: Springer.

    Book  Google Scholar 

  • Chamley, H. (2001). Clay mineralogy. Encyclopedia of Ocean Sciences: Elsevier.

    Google Scholar 

  • Deconinck, J. F., & Chamley, H. (1995). Diversity of smectite origins in late Cretaceous sediments: Example of chalks from northern France. Clay Mineralogy, 30, 365–379.

    Article  Google Scholar 

  • Elder, W. P. (1989). Molluscan extinction patterns across the Cenomanian–Turonian stage boundary in the Western Interior of the United States. Paleobiology, 15, 299–320.

    Article  Google Scholar 

  • Elderbak, K., Leckie, R. M., & Tibert, N. E. (2014). Paleoenvironmental and paleoceanographic changes across the Cenomanian/Turonian boundary Event (Oceanic Anoxic Event 2) as indicated by foraminiferal assemblages from the eastern margin of the Cretaceous Western Interior Seaway. Palaeogeography, Palaeoclimatology, Palaeoecology, 413, 29–48.

    Article  Google Scholar 

  • Fletcher, B. J., Brentnall, S. J., Anderson, C. W., Berner, R. A., & Beerling, D. J. (2008). Atmospheric carbon dioxide linked with Mesozoic and Early Cenozoic climate change. Nature Geoscience, 1, 43–48.

    Article  Google Scholar 

  • Föllmi, K. B. (2012). Early cretaceous life, climate and anoxia. Cretaceous Research, 35, 230–257.

    Article  Google Scholar 

  • Freeman, K. H., & Hayes, J. M. (1992). Fractionation of carbon isotopes by phytoplankton and estimates of ancient CO2 levels. Global Biogeochemical Cycles, 6, 185–198.

    Article  Google Scholar 

  • Friedrich, O., Erbacher, J., & Mutterlose, J. (2006). Paleoenvironmental changes across the Cenomanian/Turonian boundary event (Oceanic Anoxic Event 2) as indicated by benthic foraminifera from the Demerara Rise (ODP Leg 207). Revue de Micropaléontologie, 49, 121–139.

    Article  Google Scholar 

  • Frijia, G., & Parente, M. (2008). Strontium isotope stratigraphy in the upper Cenomanian shallow-water carbonates of the southern Apennines: Short-term perturbations of marine 87Sr/86Sr during the oceanic anoxic event 2. Palaeogeography, Palaeoclimatology, Palaeoecology, 261, 15–29.

    Article  Google Scholar 

  • Gale, A. S., & Christensen, W. G. (1996). Occurrence of the belemnite Actinocamax plenus in the Cenomanian of SE France and its significance. Bulletin Geological Society of Denmark, 43, 68–77.

    Google Scholar 

  • Gale, A. S., Hardenbol, J., & Hathway, B. (2002). Global correlation of Cenomanian (Upper Cretaceous) sequences: Evidence for Milankovitch control on sea-level. Geology, 30, 291–294.

    Article  Google Scholar 

  • Gale, A. S., Smith, A. B., Monks, N. E. A., Young, J. A., Howard, A., Wray, D. S., et al. (2000). Marine biodiversity through the Late cenomanian–early Turonian: Palaeoceanographic controls and sequence stratigraphic biases. Journal of the Geological Society, 157, 745–757.

    Article  Google Scholar 

  • Gavrilov, Y. O., Shcherbinina, E. A., Golovanova, O. V., & Pokrovskii, B. G. (2013). The late Cenomanian paleoecological event (OAE 2) in the eastern caucasus basin of Northern Peri-Tethys. Lithology and Mineral Resources, 48, 457–488.

    Article  Google Scholar 

  • Haq, B. (2014). Cretaceous eustasy revisited. Global and Planetary Change, 113, 44–58.

    Article  Google Scholar 

  • Haq, B. U., & Al-Qahtani, A. M. (2005). Phanerozoic cycles of sea-level change on the Arabian Platform. GeoArabia, 10, 127–160.

    Google Scholar 

  • Hardenbol, J., Thierry, J., Farley, M. B., Jaquin, T., de Graciansky, P. C., & Vail, P. R. (1998). Cretaceous chronostratigraphy. In P. C. Graciansky, J. Hardenbol, T. Jaquin, & P. R. Vail (Eds.), Mesozoic and Cenozoic sequence chronostratigraphic framework of European basins (pp. 3–13). Tulsa: Society of Economic Paleontologists and Mineralogists.

    Chapter  Google Scholar 

  • Hay, W. W., & Floegel, S. (2012). New thoughts about the Cretaceous climate and oceans. Earth-Science Reviews, 115(4), 262–272.

    Article  Google Scholar 

  • Hay, W. W., & Leslie, M. A. (1990). Could possible changes in global groundwater reservoir cause eustatic sea-level fluctuations. In Geophysics Study Committee, C.o. P.S. & Mathematics and Resources, National Research Council (Eds.), Sea-level change: Studies in geophysics (pp. 161–170). Washington, DC: The National Academy of Sciences, National Academy Press.

    Google Scholar 

  • Hays, J. D., & Pitman, W. C. (1973). Lithospheric plate motion, sea-level changes and climatic and ecological consequences. Nature, 246, 18–22.

    Article  Google Scholar 

  • Hu, X., Wagreich, M., & Yilmaz, I. O. (2012). Marine rapid environmental/climatic change in the Cretaceous greenhouse world. Cretaceous Research, 38, 1–6.

    Article  Google Scholar 

  • Jacobs, D. K., & Sahagian, D. L. (1993). Climate induced fluctuations in sea-level during non-glacial times. Nature, 361, 710–712.

    Article  Google Scholar 

  • Jacobs, D. K., & Sahagian, D. L. (1995). Milankovitch fluctuations in sea-level and recent trends in sea-level change: Ice may not always be the answer. In B. U. Haq (Ed.), Sequence stratigraphy and depositional response to eustatic, tectonic and climatic forcing (pp. 329–366). Heidelberg: Springer.

    Chapter  Google Scholar 

  • Jarvis, I., Carson, G. A., Cooper, M. K. E., Hart, M. B., Leary, P. N., Tocher, B. A., et al. (1988). Microfossil assemblages and the Cenomanian–Turonian (late Cretaceous) Oceanic Anoxic Event. Cretaceous Research, 9, 3–103.

    Article  Google Scholar 

  • Jarvis, I., Gale, A. S., Jenkyns, H. C., & Pearce, M. A. (2006). Secular variation in Late Cretaceous carbon isotopes and sea-level change: Evidence from a new δ13C carbonate reference curve for the Cenomanian–Campanian, 99.6–70.6 Ma. Geological Magazine, 143, 561–608.

    Article  Google Scholar 

  • Jarvis, I., Lignum, J. S., Gröcke, D. R., Jenkyns, H. C., & Pearce, M. A. (2011). Black shale deposition, atmospheric CO2 drawdown, and cooling during the Cenomanian–Turonian Oceanic Anoxic Event. Paleoceanography, 26, 3201.

    Article  Google Scholar 

  • Jarvis, I., Mabrouk, A., Moody, R. T. J., & de Cabrera, S. C. (2002). Late Cretaceous (Campanian) carbon isotope events, sea-level change and correlation of the Tethyan and Boreal realms. Palaeogeography, Palaeoclimatology, Palaeoecology, 188, 215–248.

    Article  Google Scholar 

  • Jarvis, I., Mabrouk, A., Moody, R. T. J., Murphy, A. M., & Sandman, R. I. (2008). Applications of carbon isotope and elemental (Sr/Ca, Mn) chemostratigraphy to sequence analysis: Sea-level change and the global correlation of pelagic carbonates. In M. J. Salem & A. S. El-Hawat (Eds.), The geology of east Libya (pp. 369–396). Tripoli: Earth Science Society of Libya.

    Google Scholar 

  • Jarvis, I., Murphy, A. M., & Gale, A. S. (2001). Geochemistry of pelagic and hemi-pelagic carbonates: Criteria for identifying systems tracts and sea-level change. Journal of the Geological Society, 158, 685–696.

    Article  Google Scholar 

  • Jefferies, R. P. S. (1962). The palaeoecology of the Actinocamax plenus sub zone (lowest Turonian) in the Anglo-Paris Basin. Palaeontology, 4, 609–647.

    Google Scholar 

  • Jenkyns, H. C. (2010). Geochemistry of oceanic anoxic events. Geochemistry, Geophysics, Geosystems, 11, Q03004.

    Article  Google Scholar 

  • Kalanat, B., Mahmudy-Gharaie, M. H., Vahidinia, M., Vaziri-Moghaddam, H., Kano, A., & Kumon, F. (2017a). Paleoenvironmental perturbation across the Cenomanian/Turonian boundary of the Kopet-Dagh Basin (NE Iran), inferred from geochemical anomalies and benthic foraminiferal assemblages. Cretaceous Research. https://doi.org/10.1016/j.cretres.2017.09.019.

    Google Scholar 

  • Kalanat, B., Vahidinia, M., Vaziri-Moghaddam, H., & Mahmudy-Gharaie, M. H. (2015). A Cenomanian–Turonian drowning unconformity on the eastern part of Kopet-Dagh Basin, NE Iran. Arabian Journal of Geoscience, 8, 8373–8384.

    Article  Google Scholar 

  • Kalanat, B., Vahidinia, M., Vaziri-Moghaddam, H., & Mahmudy-Gharaie, M. H. (2016). Planktonic foraminiferal turnover across the Cenomanian–Turonian boundary (OAE2) in northeast of Tethys realm, Kopet-Dagh Basin. Geologica Carpathica, 67, 451–462.

    Article  Google Scholar 

  • Kalanat, B., Vahidinia, M., Vaziri-Moghaddam, H., & Mahmudy-Gharaie, M. H. (2017b). Benthic foraminiferal response to productivity and oxygen changes across Cenomanian–Turonian boundary (OAE2) in the northeastern Tethys, Kopet-Dagh sedimentary basin. Journal of African Earth Science, 134, 33–47.

    Article  Google Scholar 

  • Kaminski, M. A., & Gradstein, F. M. (2005). Atlas of Paleogene cosmopolitan deep-water agglutinated foraminifera. Grzybowski Foundation Special Publication, 10, 574+vii.

    Google Scholar 

  • Keller, G., Tantawy, A. A., Berner, Z., Adatte, T., Chellai, E. H., & Stueben, D. (2008). Oceanic events and biotic effects of the Cenomanian–Turonian anoxic event, Tarfaya Basin, Morocco. Cretaceous Research, 29, 976–994.

    Article  Google Scholar 

  • Kerr, A. C. (1998). Oceanic plateau formation: A cause of mass extinction and black shale deposition around the Cenomanian–Turonian boundary? Journal of the Geological Society, 155, 619–626.

    Article  Google Scholar 

  • Kidder, D. L., & Worsley, T. R. (2010). Phanerozoic Large Igneous Provinces (LIPs), HEATT (Haline Euxinic Acidic Thermal Transgression) episodes, and mass extinctions. Palaeogeography, Palaeoclimatology, Palaeoecology, 295, 162–191.

    Article  Google Scholar 

  • Kidder, D. L., & Worsley, T. R. (2012). A human-induced hothouse climate? GSA Today, 22(2), 4–11.

    Article  Google Scholar 

  • Koutsoukos, A.M. (1989). Mid to Late Cretaceous microbiostratigraphy, palaeoecology and palaeogeography of the Sergipe basin, Northeastern Brazil. Ph.D. thesis, University of Rio de Jaeniro.

  • Kump, L. R., & Arthur, M. A. (1999). Interpreting carbon-isotope excursions: Carbonates and organic matter. Chemical Geology, 161, 181–198.

    Article  Google Scholar 

  • Kuypers, M. M. M., Pancost, R. D., & Sinninghe Damste, J. S. (1999). A large and abrupt fall in atmospheric CO2 concentration during Cretaceous times. Nature, 399, 342–345.

    Article  Google Scholar 

  • Leckie, R. M., Bralower, T. J., & Cashman, R. (2002). Oceanic anoxic events and plankton evolution: Biotic response to tectonic forcing during the mid-Cretaceous. Paleoceanography, 17, 13.1–13.29.

    Article  Google Scholar 

  • Leckie, R. M., Uretich, R. F., West, O. L. O., Finkelstein, D., & Schmidt, M. G. (1998). Paleoceanography of the southwestern Western Interior Sea during the time of the Cenomaniane–Turonian boundary (Late Cretaceous). In M. A. Arthur & W. E. Dean (Eds.), Stratigraphy and paleoenvironments of the Cretaceous western interior seaway (pp. 101–126). Tulsa: Society of Economic Paleontologists and Mineralogists, Concepts in Sedimentology and Paleontology.

    Chapter  Google Scholar 

  • MacLeod, K. G., Huber, B. T., Berrocoso, Á. J., & Wendler, I. (2013). A stable and hot Turonian without glacial δ18O excursions is indicated by exquisitely preserved Tanzanian foraminifera. Geology, 41, 1083–1086.

    Article  Google Scholar 

  • Mahmudy Gharaie, M. H., Matsumoto, R., Kakuwa, Y., & Milroy, G. (2004). Late Devonian facies variety in Iran: Volcanism as a possible trigger of the environmental perturbation near the Frasnian-Famennian boundary. Geological Quarterly, 48(4), 323–332.

    Google Scholar 

  • Masse, J. P., & Philip, P. (1981). Cretaceous coral-rudist buildups of France. In D. F. Toomey (Ed.), european fossil reef models (pp. 399–426). Tulsa: Society of Economic Paleontologists and Mineralogists, Special Publication.

    Chapter  Google Scholar 

  • Meyers, P. A. (1997). Organic geochemical proxies of paleoceanographic, paleolimnologic, a paleoclimatic process. Organic Geochemistry, 27, 213–250.

    Article  Google Scholar 

  • Miller, K. G., Sugarman, P. J., Browning, J. V., Kominz, M. A., Hernández, J. C., Olsson, R. K., et al. (2003). Late Cretaceous chronology of large, rapid sea-level changes: Glacioeustasy during the greenhouse world. Geology, 31, 585–588.

    Article  Google Scholar 

  • Miller, K. G., Wright, J. D., & Browning, J. V. (2005). Visions of ice sheets in a greenhouse world. Marine Geology, 217, 215–231.

    Article  Google Scholar 

  • Moriya, K., Wilson, P. A., Friedrich, O., Erbacher, J., & Kawahata, H. (2007). Testing for ice sheets during the mid-Cretaceous greenhouse using glassy foraminiferal calcite from the mid-Cenomanian tropics on Demerara Rise. Geology, 35, 615–618.

    Article  Google Scholar 

  • Mort, H. P., Adatte, T., Keller, G., Bartels, D., Follmi, K. B., Steinmann, P., et al. (2008). Carbon deposition and phosphorus accumulation during Oceanic Anoxic Event 2 in Tarfaya. Morocco, Cretaceous Research, 29, 1008–1023.

    Article  Google Scholar 

  • Moussavi-Harami, R., & Brenner, R. (1992). Lower Cretaceous (Neocomian) fluvial deposits in eastern Kopet Dagh. Cretaceous Research, 11, 163–174.

    Article  Google Scholar 

  • Muttoni, G., Mattei, M., Balini, M., Zanchi, A., Gaetani, A., & Berra, F. (2009). The drift history of Iran from the Ordovician to the Triassic. Geological Society of London, 312, 7–29.

    Article  Google Scholar 

  • Naafs, B. D. A., Castro, J. M., De Gea, G. A., Quijano, M. L., Schmidt, D. N., & Schmidt, R. D. X. (2016). Gradual and sustained carbon dioxide release during Aptian Oceanic Anoxic Event 1a. Nature Geoscience, 9, 135–139.

    Article  Google Scholar 

  • Paul, C. R. C., Lamolda, M. A., Mitchell, S. F., Vaziri, M. R., Gorostidi, A., & Marshall, J. D. (1999). The Cenomanian–Turonian boundary at Eastbourne (Sussex, UK): A proposed European reference section. Palaeogeography, Palaeoclimatology, Palaeoecology, 150, 83–121.

    Article  Google Scholar 

  • Pearce, M. A., Jarvis, I., & Tocher, B. A. (2009). The Cenomanian–Turonian boundary event, OAE2 and palaeoenvironmental change in epicontinental seas: New insights from the dinocyst and geochemical records. Palaeogeography, Palaeoclimatology, Palaeoecology, 280, 207–234.

    Article  Google Scholar 

  • Pogge von Strandmann, P. A. E., Jenkyns, H. C., & Woodfine, R. G. (2013). Lithium isotope evidence for enhanced weathering during Oceanic Anoxic Event 2. Nature Geoscience, 6, 668–672.

    Article  Google Scholar 

  • Premoli-Silva, I., & Verga, D. (2004). Practical manual of Cretaceous planktic foraminifera. In D. Verga & R. Rettori (Eds.), International School on Planktic Foraminifera, University of Perugia and Milan.

  • Robaszynski, F., Gale, A. S., Juignet, P., Amédro, F., & Hardenbol, J. (1998). Sequence stratigraphy in the Upper Cretaceous series of the Anglo-Paris Basin: Exemplified by the Cenomanian stage. In P. C. de Graciansky, J. Hardenbol, T. Jacquin, & P. Vail (Eds.), Mesozoic and cenozoic sequence stratigraphy of European basins (pp. 363–386). Tulsa: Society for Sedimentary Geology, Special Publication.

    Chapter  Google Scholar 

  • Robert, A., Letouzey, J., Kavoosi, M. A., Sherkati, S., Müller, C., Vergés, J., et al. (2014). Structural evolution of the Kopeh Dagh fold-and-thrust belt (NE Iran) and interactions with the South Caspian Sea Basin and Amu Darya Basin. Marine and Petroleum Geology, 57, 67–78.

    Article  Google Scholar 

  • Royer, D. L., Berner, R. A., Montañez, I. P., Tabor, N. J., & Beerling, D. J. (2004). CO2 as a primary driver of Phanerozoic climate. GSA Today, 14, 4–10.

    Article  Google Scholar 

  • Sames, B., Wagreich, M., Wendler, J. E., Haq, B. U., Conrad, C. P., Melinte-Dobrinescu, M. C., et al. (2016). Review: Short-term sea-level changes in a greenhouse world—a view from the Cretaceous. Palaeogeography, Palaeoclimatology, Palaeoecology, 441, 393–411.

    Article  Google Scholar 

  • Schlanger, S. O., Arthur, M. A., Jenkyns, H. C., & Scholle, P. A. (1987). The Cenomanian–Turonian oceanic anoxic event, I Stratigraphy and distribution of organic carbon-rich beds and the marine 13C excursion. In J. Brooks & J. A. Fleet (Eds.), Marine petroleum source rocks (pp. 371–399). London: Geological Society, Special Publication.

    Google Scholar 

  • Scholle, P. A., & Arthur, M. A. (1980). Carbon isotope fluctuations in Cretaceous pelagic limestones: Potential stratigraphic and petroleum exploration tools. American Association of Petroleum Geologists Bulletin, 64, 67–87.

    Google Scholar 

  • Seton, M., Gaina, C., Muller, R. D., & Heine, C. (2009). Mid-Cretaceous seafloor spreading pulse: Fact or fiction? Geology, 37, 687–690.

    Article  Google Scholar 

  • Sinninghe Damsté, J. S., Kuypers, M. M. M., Pancost, R., & Schouten, S. (2008). The carbon isotopic response of algae, (cyano) bacteria, archaea and higher plants to the late Cenomanian perturbation of the global carbon cycle: Insights from biomarkers in black shales from the Cape Verde Basin (DSDP Site 367). Organic Geochemistary, 39, 1703–1718.

    Article  Google Scholar 

  • Sinninghe Damsté, J. S., van Bentum, E. C., Reichart, G. J., Pross, J., & Schouten, S. (2010). A CO2 decrease-driven cooling and increased latitudinal temperature gradient during the mid cretaceous oceanic anoxic event 2. Earth Planetary Science Letter, 293, 97–103.

    Article  Google Scholar 

  • Sinton, C. W., & Duncan, R. A. (1997). Potential links between ocean plateau volcanism and global ocean anoxia at the Cenomanian–Turonian boundary. Economic Geology, 92, 836–842.

    Article  Google Scholar 

  • Sliter, W. V., & Baker, R. A. (1972). Cretaceous bathymetric distribution of benthic foraminifera. Journal of Foraminiferal Research, 2, 167–183.

    Article  Google Scholar 

  • Snow, L. J., Duncan, R. A., & Bralower, T. J. (2005). Trace element abundances in the Rock Canyon Anticline, Pueblo, Colorado, marine sedimentary section and their relationship to Caribbean plateau construction and oxygen anoxic event. Paleoceanography, 20, 30.

    Google Scholar 

  • Trenberth, K. E., Smith, L., Qian, T., Dai, A., & Fasullo, J. (2007). Estimates of the global water budget and its annual cycle using observational and model data. Journal of Hydrometeorology, Special Section, 8, 758–769.

    Article  Google Scholar 

  • Tsikos, H., Jenkyns, H. C., & Walsworth-Bell, B. (2004). Carbon-isotope stratigraphy recorded by the Cenomanian–Turonian Oceanic Anoxic Event: Correlation and implications based on three key localities. Journal of Geological Society, 161, 711–719.

    Article  Google Scholar 

  • Turgeon, S. C., & Creaser, R. A. (2008). Cretaceous oceanic anoxic event 2 triggered by a massive magmatic episode. Nature, 454, 323–326.

    Article  Google Scholar 

  • Ulmishek, G. F. (2004). Petroleum geology and resources of the Amu-Darya Basin, Turkmenistan, Uzbekistan, Afghanistan, and Iran. Reston, VA: U.S. Deptartment of the Interior, U.S. Geological Survey.

    Google Scholar 

  • van Bentum, E. C., Hetzel, A., Brumsack, H. J., Forster, A., Reichart, G. R., & Sinninghe Damsté, J. S. (2009). Reconstruction of water column anoxia in the equatorial Atlantic during the Cenomanian–Turonian oceanic anoxic event using biomarker and trace metal proxies. Palaeogeography, Palaeoclimatology, Palaeoecology, 280, 489–498.

    Article  Google Scholar 

  • van Bentum, E. C., Reichart, G. J., Forster, A., & Sinninghe Damsté, J. S. (2012). Latitudinal differences in the amplitude of the OAE-2 carbon isotopic excursion: pCO2 and paleo productivity. Biogeosciences, 9, 717–731.

    Article  Google Scholar 

  • Voigt, S., Gale, A. S., & Flögel, S. (2004). Midlatitude shelf seas in the Cenomanian–Turonian greenhouse world: Temperature evolution and North Atlantic circulation. Paleoceanography, 19, 4020.

    Article  Google Scholar 

  • Voigt, S., Gale, A. S., & Vioigt, T. (2006). Sea-level change, carbon cycling and palaeoclimate during the Late Cenomanian of northwest Europe; an integrated palaeoenvironmental analysis. Cretaceous Research, 27, 836–858.

    Article  Google Scholar 

  • Wagreich, M., Lein, R., & Sames, B. (2014). Eustasy, its controlling factors, and the limno-eustatic hypothesis concepts inspired by Eduard Suess. Journal of Austrian Earth Science, 107(1), 115–131.

    Google Scholar 

  • Weissert, H., Lini, A., Follmi, K. B., & Kuhn, O. (1998). Correlation of Early Cretaceous carbon isotope stratigraphy and platform drowning events: A possible link? Palaeogeography, Palaeoclimatology, Palaeoecology, 137, 189–203.

    Article  Google Scholar 

  • Wendler, J. E., Meyers, S. R., Wendler, I., Vogt, C., & Kuss, J. (2011). Drivers of cyclic sea-level changes during the Cretaceous greenhouse: A new perspective from the Levant Platform. Geological Society of London, Special Publication, 43, 376.

    Google Scholar 

  • Wendler, I., Wendler, J. E., & Clarke, L. J. (2016a). Sea-level reconstruction for Turonian sediments from Tanzania based on integration of sedimentology, microfacies, geochem-istry and micropaleontology. Palaeogeography, Palaeoclimatology, Palaeoecology, 441(3), 528–564.

    Article  Google Scholar 

  • Wendler, J. E., Wendler, I., Vogt, C., & Kuss, J. (2016b). Link between cyclic eustatic sea-level change and continental weathering: Evidence for aquifer-eustasy in the Cretaceous. Palaeogeography, Palaeoclimatology, Palaeoecology, 441, 430–437.

    Article  Google Scholar 

  • Wilmsen, M. (2003). Sequence stratigraphy and palaeoceanography of the Cenomanian Stage in northern Germany. Cretaceous Research, 24, 525–568.

    Article  Google Scholar 

  • Zonenshain, L. P., & Le Pichon, X. (1986). Deep basins of the Black Sea and Caspian Sea as remnants of Mesozoic back-arc basins. Tectonophysics, 123, 181–211.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere thanks to Dr. Kai-Uwe Gräfe for his editorial guidance and two anonymous reviewers for their constructive comments. Thanks are also extended to Prof. Fujio Kumon (Shinshu University of Japan) for his generous supports, Dr. Yoshihiro Kakizaki, Dr. Mahsa Saeedi and Dr. Tasuku Urabe for their kindly collaboration in geochemical analysis. This study was conducted as a Ph.D. thesis at the Ferdowsi University of Mashhad (#3/28230) contribution of the first author (B.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamad Hosein Mahmudy Gharaie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalanat, B., Gharaie, M.H.M., Vahidinia, M. et al. Short-term eustatic sea-level changes during the Cenomanian–Turonian Supergreenhouse interval in the Kopet-Dagh Basin, NE Tethyan realm. J Iber Geol 44, 177–191 (2018). https://doi.org/10.1007/s41513-018-0060-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41513-018-0060-8

Keywords

Palabras clave

Navigation