Neotectonic controls and stream piracy on the evolution of a river catchment: a case study in the Agua de la Peña River basin, Western Pampean Ranges, Argentina

  • Laura P. Perucca
  • Karen Espejo
  • María Yanina Esper Angillieri
  • Martín Rothis
  • Flavia Tejada
  • Mariana Vargas
Research Paper
  • 14 Downloads

Abstract

Purpose

The La Peña River basin is located to the northeast of the province of San Juan, and crosses from east to west, the entire northern portion of the sierra de Valle Fértil, in Western Pampean Ranges. The strong relief of the mountain range is attributed to neotectonic activity of the NW trending Valle Fértil fault. The purpose of this study is to interpret the geological control on the dynamic drainage organization and the relevant neotectonic tilt due to the above-mentioned fault and to the NE trending El Alto fault. In addition, to identify stream piracy due to neotectonic activity of the Valle Fértil and El Alto faults in this river basin.

Method

We analyze the influence of tectonics in the evolution and shaping up of the present day Agua de La Peña River drainage basin, using geomorphic indices and markers. Several morphotectonic parameters obtained for the Agua de La Peña River basin allow us to determine the inference of tectonic deformation along the river profile. The regional morphometric analysis relies on four topographical swath profiles to identify several regional topographic features and anomalies. We examine the main river channel and tributaries in terms of their longitudinal profiles and knickpoints distribution in order to explore the signal of transient geomorphic response to river capture.

Results

Our results show the main control of neotectonics on the local topography and drainage network. Based on the foregoing, we infer that the landscape in northern portion of sierra de Valle Fértil is in a transient state derived from a combination between drainage arrangement and relief rejuvenation, and so, river basin features are mainly caused by divide migration, drainage network adjustments and catchment capture due to neotectonism. It may result from the tectonic adjustment of Valle Fértil and El Alto faults since the Pleistocene until the present day.

Conclusion

We conclude that reorganization of drainage lines by capture and reversal drainage by neotectonic activity could explain the unusual pattern of this river basin.

Keywords

Agua de La Peña River basin Stream piracy Morphotectonic indices Neotectonic 

Resumen

Propósito

La cuenca del río Agua de La Peña está ubicada al noreste de la provincia de San Juan, y atraviesa de este a oeste, toda la porción norte de la sierra de Valle Fértil, en las Sierras Pampeanas Occidentales. El fuerte relieve de la sierra de Valle Fértil se atribuye a la actividad neotectónica de la falla Valle Fértil ubicada en su flanco occidental y con rumbo NO. El propósito de nuestro estudio es interpretar el control geológico sobre la red de drenaje de la cuenca y el basculamiento neotectónico de la misma debido a la estructura antes mencionada y a la falla El Alto, de rumbo NE. También se ha identificado un el evento de captura fluvial en esta cuenca hidrográfica debido a la actividad neotectónica de dichas fallas.

Metodología

En este estudio, se analiza la influencia de la tectónica en la evolución y modelización de la actual cuenca del río Agua de La Peña, a través del uso de índices y marcadores geomorfológicos. Los diversos parámetros morfotectónicos obtenidos para la cuenca del río Agua de La Peña permiten determinar la influencia de la deformación tectónica a lo largo del perfil del río. El análisis morfométrico regional se basa en la construcción de cuatro perfiles topográficos swath con el fin de identificar diversas características topográficas regionales y anomalías. Para analizar la señal de la respuesta geomorfológica transitoria a la captura fluvial, se ha evaluado el canal principal del río y sus afluentes en términos de sus perfiles longitudinales y de distribución de los knickpoints.

Resultados

Nuestros resultados muestran el control de la neotectónica sobre la topografía local y la red de drenaje. Sobre la base de lo anterior, inferimos que el paisaje en la porción norte de la sierra de Valle Fértil se encuentra en un estado transitorio derivado de una combinación entre el diseño del drenaje y el rejuvenecimiento del relieve. Las características de la cuenca son causadas principalmente por la migración de la divisoria y la captura de la cabecera debido a la actividad tectónica reciente. Esto puede ser el resultado del ajuste tectónico de las fallas de Valle Fértil y El Alto desde el Pleistoceno hasta la actualidad.

Concluimos

Que la reorganización de las líneas de drenaje debido a la captura e inversión del drenaje debido a la actividad tectónica cuaternari podrían explicar el diseño inusual de esta cuenca fluvial.

Palabras clave

Cuenca del río Agua de La Peña Captura fluvial Índices morfotectónicos Neotectónica 

Notes

Acknowledgements

The present contribution was funded through Projects 1E/750 CS-CICITCA, PIP CONICET and PICTO 2009 UNSJ-0013- Préstamo BID. We thank Douglas Burbank, the anonymous reviewers and Iberian Geology Editor Pedro Alfaro for constructive criticism and thoughtful reviews, which greatly improved our study.

References

  1. Alcober, O. (1996). Revisión de los Crurotarsis, estratigrafía y tafonomía de la Formación Ischigualasto. Unpublished Ph.D. thesis. Argentina: Universidad Nacional de San Juan.Google Scholar
  2. Allmendinger, R., Figueroa, D., Zinder, E., Beer, J., Mpodozis, C., & Isacks, B. (1990). Foreland shortening and crustal balancing in the Andes at 30° latitude. Tectonics, 9, 789–809.  https://doi.org/10.1029/tc009i004p00789.CrossRefGoogle Scholar
  3. Alvarado, P., Pardo, M., Gilbert, H., Miranda, S., Anderson, M., Saez, M., et al. (2009). Flat–slab subduction and crustal models for the seismically active Sierras Pampeanas region of Argentina. In S. Kay, V. A. Ramos, & W. Dickinson (Eds.), MWR204: Backbone of the Americas: Shallow subduction, plateau uplift, and ridge and terrane collision (pp. 261–278). Boulder: Geological Society of America.  https://doi.org/10.1130/2009.1204(12).Google Scholar
  4. Anderson, M., Alvarado, P., Zandt, G., & Beck, S. L. (2007). Geometry and brittle deformation of the subducting Nazca Plate, central Chile and Argentina. Geophysical Journal International, 171, 419–434.  https://doi.org/10.1111/j.1365-246x.2007.03483.x.CrossRefGoogle Scholar
  5. Audemard, F. A. (1999). Morpho-structural expression of active thrust fault systems in the humid tropical foothills of Colombia and Venezuela. Zeitschrift für Geomorphologie, 118, 1–18.Google Scholar
  6. Bishop, P., Hoey, T. B., Jansen, J. D., & Artza, I. L. (2005). Knickpoint recession rates and catchment area: the case of uplifted rivers in Eastern Scotland. Earth Surface Processes and Landforms, 30, 767–778.  https://doi.org/10.1002/esp.1191.CrossRefGoogle Scholar
  7. Bull, W. B., & McFadden, L. D. (1977). Tectonic geomorphology north and south of the Garlock Fault, California. In: D. Doehring (Ed.), Geomorphology in arid regions, Proceedings of eighth annual geomorphology symposium (pp. 115–138). Binghamton: State University of New York.Google Scholar
  8. Burbank, D. W., & Anderson, R. S. (2001). Tectonic geomorphology (p. 270). Oxford: Blackwell Scientific.Google Scholar
  9. Burbank, D. W., McLean, J. K., Bullen, M., Abdrakhmatov, K. Y., & Miller, M. M. (1999). Partitioning of intermontane basins by thrust related folding. Tien Shan, Kyrgyzstan: Basin Research, 11, 75–92.  https://doi.org/10.1046/j.1365-2117.1999.00086.x.Google Scholar
  10. Cahill, T., & Isacks, B. L. (1992). Seismicity and shape of the subducted Nazca plate. Journal of Geophysical Research, 97(B12), 17503–17529.  https://doi.org/10.1029/2003gl019231.CrossRefGoogle Scholar
  11. Cardinali, A., Baraldo, J., Monetta, A., & Weidmann, R. (1999). Análisis estructural de la falla El Alto, Ischigualasto, San Juan. In 14th Argentine geological congress (pp. 212–215).Google Scholar
  12. Chen, Y. C., Sung, Q., Chen, C. N., & Jean, J. S. (2006). Variations in tectonic activities of the central and southwestern foothills, Taiwan, inferred from river Hack profiles. Terrestrial Atmospheric and Oceanic Sciences, 17, 563–578.CrossRefGoogle Scholar
  13. Clark, M. K., Schoenbohm, L. M., Royden, L. H., Whipple, K. X., Burchfiel, B. C., Zhang, X., et al. (2004). Surface uplift, tectonics and erosion of eastern Tibet from large scale drainage patterns. Tectonics, 23, 1–20.  https://doi.org/10.1029/2002tc001402.CrossRefGoogle Scholar
  14. Costa, C., Machette, M., Dart, R., Bastías, H., Paredes, J., Perucca, L., Tello, G., & Haller, K. (2000). Map and database of quaternary faults and folds in Argentina. In U.S. Geological Survey Open-File Report 00-0108, Denver, Map at 1:2,000,000 scale + report of 75 pp.Google Scholar
  15. Cox, R. T. (1994). Analysis of drainage basin symmetry as a rapid technique to identify areas of possible quaternary tilt block tectonics: an example from the Mississippi embayment. Geological Society American Bulletin, 106, 571–581.  https://doi.org/10.1130/0016-7606.CrossRefGoogle Scholar
  16. Currie, B., Colombi, C., Tabor, N., Shipman, T., & Montañez, I. (2009). Stratigraphy and architecture of the Upper Triassic Ischigualasto Formation, Ischigualasto Provincial Park, San Juan, Argentina. Journal of South American Earth Sciences, 27, 74–87.  https://doi.org/10.1016/j.jsames.2008.10.004.CrossRefGoogle Scholar
  17. Delcaillau, B., Carozza, J. M., & Laville, E. (2006). Recent fold growth and drainage development: the Janauri and Chandigarh anticlines in the Siwalik foothills, Northwest India. Geomorphology, 76, 241–256.  https://doi.org/10.1016/j.geomorph.2005.11.005.CrossRefGoogle Scholar
  18. Esper Angillieri, M. Y. (2008). Morphometric analysis of Colangüil river basin and flash flood hazard, San Juan, Argentina. Environmental Geology, 55, 107–111.  https://doi.org/10.1007/s00254-007-0969-2.CrossRefGoogle Scholar
  19. Esper Angillieri, M. Y. (2012). Morphometric characterization of the Carrizal basin applied to the evaluation of flash floods hazard, San Juan, Argentina. Quaternary International, 253, 74–79.  https://doi.org/10.1016/j.quaint.2011.05.011.CrossRefGoogle Scholar
  20. Esper Angillieri, M. Y., & Perucca, L. P. (2014). Geomorphology and morphometry of the de La Flecha river basin, San Juan, Argentina. Environmental Earth Sciences, 72, 3227–3237.  https://doi.org/10.1007/s12665-014-3227-4.CrossRefGoogle Scholar
  21. Fairbridge, R. (1968). Incised meanders. In: R. W. Fairbridge (Ed.) The Encyclopedia of Geomorphology, Encyclopedia of Earth Sciences Series (Vol. 3, pp. 548–550). Reinhold Book Corporation.Google Scholar
  22. Friend, P. F., Jones, N. E., & Vincent, S. J. (1999). Drainage evolution in active mountain belts: extrapolation backwards from present day Himalayan River patterns. Special Publication of the international Association of Sedimentologists, 28, 305–313.Google Scholar
  23. Furque, G., González, P., & Caballé, M. (1998). Descripción de la hoja geológica 3169-II, San José de Jáchal (Provincias de San Juan y La Rioja). Servicio Geológico y Minero Argentino.Google Scholar
  24. Gardner, T. W., Back, W., Bullard, T. F., Hare, P. W., Kesel, R. H., Lowe, D. R., et al. (1987). Central America and the Caribbean. In W. L. Graf (Ed.), Geomorphic systems of North America (Vol. 2, pp. 343–401). Boulder: Geological Society of America, Centennial Special.Google Scholar
  25. Giletycz, S., Loget, N., Chang, C., & Mouthereau, F. (2015). Transient fluvial landscape and preservation of low-relief terrains in an emerging orogen: Example from Hengchun Peninsula, Taiwan. Geomorphology, 231, 169–181.  https://doi.org/10.1016/j.geomorph.2014.11.026.CrossRefGoogle Scholar
  26. Goldrick, G., & Bishop, P. (2007). Regional analysis of bedrock stream long profiles: evaluation of Hack’s SL form, and formulation and assessment of an alternative (the DS form). Earth Surficial Processes, Landforms, 32, 649–671.  https://doi.org/10.1002/esp.1413.CrossRefGoogle Scholar
  27. González Díaz, E. F., & Castro Godoy, S. (2008). Arroyo Limay chico: un ejemplo de captura fluvial en la cuenca superior del Río Limay (SE de Neuquén). Revista de la Asociación Geológica Argentina, 63, 76–83.Google Scholar
  28. Hack, J. T. (1973). Stream-profile analysis and stream-gradient indices. U.S. Geological Survey Journal of Research, 1, 421–429.Google Scholar
  29. Hare P., & Gardner T. (1984). Geomorphic indicators of vertical neo-tectonism along converging plate margins, Nicoya Peninsula, Costa Rica. In M. Morisawa & J. Hack (Eds.) Tectonic geomorphology, Proceedings 15th geomorphology symposium Birmingham (pp. 76–104). Boston: Allen & Unwinr.Google Scholar
  30. Harvey, A. M., & Wells, S. G. (1987). Response of Quaternary fluvial system to differential epeirogenic uplift: Aguas and Feos river systems, southeast Spain. Geology, 15, 83–109.CrossRefGoogle Scholar
  31. Hergarten, S., Robl, J., & Stüwe, K. (2014). Extracting topographic swath profiles across curved geomorphic features. Earth Surface Dynamics, 2, 97–104.  https://doi.org/10.5194/esurf-2-97-2014.CrossRefGoogle Scholar
  32. Horton, R. E. (1945). Erosional development of streams and their drainage basins. Hydrophysical approach to quantitative morphology. Geological Society of America Bulletin, 56, 275–370.CrossRefGoogle Scholar
  33. Jackson, J., & Leeder, M. (1994). Drainage systems and the development of normal faults: an example from Pleasant Valley, Nevada. Journal of Structural Geology, 16, 1041–1059.  https://doi.org/10.1016/0191-8141(94)90051-5.CrossRefGoogle Scholar
  34. Jordan, T. E., & Allmendinger, R. W. (1986). The Sierras Pampeanas of Argentina: A modern analogue of Rocky Mountain foreland deformation. American Journal of Science, 286, 737–764.  https://doi.org/10.2475/ajs.286.10.737.CrossRefGoogle Scholar
  35. Kay, S. M., & Mpodozis, C. (2002). Magmatism as a probe to the Neogene shallowing of the Nazca plate beneath the modern Chilean flat slab. Journal of South American Earth Sciences, 15, 39–59.  https://doi.org/10.1016/S0895-9811(02)00005-6.CrossRefGoogle Scholar
  36. Kay, S., Mpodozis, C., Ramos, V., & Munizaga, F. (1991). Magma source variations for mid-late Tertiary magmatic rocks associated with a shallowing subduction zone and a thickening crust in the central Andes (28° to 33° S). In R. S. Harmon & C. W. Rapela (Eds.), Andean magmatism and its tectonic setting (Vol. 265, pp. 113–137). Boulder: Geological Society of America. (special paper).CrossRefGoogle Scholar
  37. Keller, E. A., & Pinter, N. (1996). Active tectonics: Earthquakes, uplift and landscapes (1st ed.). New Jersey: Prentice Hall.Google Scholar
  38. Keller, E. A., & Pinter, N. (2002). Active tectonics. Earthquakes, uplift, and landscape (2nd ed.). New Jersey: Prentice Hall.Google Scholar
  39. Kendrick, E., Bevis, M., Smalley, R. J., Brooks, B., Vargas, R. B., Lauría, E., et al. (2003). The Nazca-South America Euler vector and its rate of change. Journal of South American Earth Sciences, 16, 125–131.  https://doi.org/10.1016/s0895-9811(03)00028-2.CrossRefGoogle Scholar
  40. Lave, J., & Avouac, J. P. (2001). Fluvial incision and tectonic uplift across the Himalayas of central Nepal. Journal of Geophysical Research, 106, 561–591.CrossRefGoogle Scholar
  41. Martinod, J., Husson, L., Roperch, P., Guillaume, B., & Espurt, N. (2010). Horizontal subduction zones, convergence velocity and the building of the Andes. Earth and Planetary Science Letters, 299, 299–309.  https://doi.org/10.1016/j.epsl.2010.09.010.CrossRefGoogle Scholar
  42. Mather, A. E. (2000). Adjustment of drainage network to capture induced base-level change: an example from the Sorbas basin, SE Spain. Geomorphology, 34, 271–289.  https://doi.org/10.1016/s0169-555x(00)00013-1.CrossRefGoogle Scholar
  43. Melton, M. A. (1957). An analysis of the relation among elements of climate, surface properties and geomorphology. Office of Naval Research Project NR389-042, Technical report 11. New York: Department of Geology Columbia University.Google Scholar
  44. Milana, J. P., & Alcober, O. (1994). Modelo tectosedimentario de la cuenca triásica de Ischigualasto (San Juan, Argentina). Revista de la Asociación Geológica Argentina, 49, 217–235.Google Scholar
  45. Montgomery, D. R. (2001). Slope distributions, hillslope thresholds and steady-state topography. American Journal of Science, 301, 432–454.  https://doi.org/10.2475/ajs.301.4-5.43.CrossRefGoogle Scholar
  46. Ortiz, G., Alvarado, P., Fosdick, J., Perucca, L., Saez, M., & Venerdini, A. (2015). Active Deformation in the Northern Sierra de Valle Fértil, Sierras Pampeanas, Argentina. Journal of South American Earth Sciences, 64, 339–350.  https://doi.org/10.1016/j.jsames.2015.08.015.CrossRefGoogle Scholar
  47. Perucca, L. P., & Esper Angillieri, M. Y. (2011). Morphometric characterization of the Molle Basin applied to the evaluation of flash floods hazard, Iglesia Department, San Juan, Argentina. Quaternary International, 233, 81–86.  https://doi.org/10.1016/j.quaint.2010.08.007.CrossRefGoogle Scholar
  48. Perucca, L. P., & Vargas, H. (2014). Neotectónica de la provincia de San Juan, centro-oeste de Argentina. Boletín de la Sociedad Geológica Mexicana, 66, 291–304.CrossRefGoogle Scholar
  49. Pilger, R. H. (1981). Plate reconstructions, aseismic ridges, and low angle subduction beneath the Andes. Geological Society of America Bulletin, 92, 448–456.CrossRefGoogle Scholar
  50. Ramos, V. (1988). The tectonics of the Central Andes; 30° to 33°S latitude. In S. Clark & C. Burchfiel (Eds.), Processes in continental lithospheric deformation (Vol. 218, pp. 31–54). Boulder: Geological Society of America. (special paper).CrossRefGoogle Scholar
  51. Ramos, V. A. (1999). Plate tectonic setting of the Andean Cordillera. Episodes, 22, 183–190.Google Scholar
  52. Ramos, V. A., Cristallini, E. O., & Pérez, D. (2002). The Pampean flat-slab of the Central Andes. Journal of South American Earth Sciences, 15, 59–78.CrossRefGoogle Scholar
  53. Ritter, D. F., Kochel, R. C., & Miller, J. R. (2002). Process geomorphology (p. 560). Long Grove: Waveland Press.Google Scholar
  54. Rosenbaum, G., & Mo, W. (2011). Tectonic and magmatic responses to the subduction of high bathymetric relief. Gondwana Research, 19, 571–582.  https://doi.org/10.1016/j.gr.2010.10.007.CrossRefGoogle Scholar
  55. Rossello, E., Mozetic, M., Cobbold, P., de Urreiztieta, M., Gapais, D., & López-Gamundi, O. (1996). The Valle Fértil flower structure and its relationships with the Precordillera and Pampean Ranges, (30–32°S, Argentina). In Third ISAG (pp. 481–484).Google Scholar
  56. Schumm, S. A. (1956). Evolution of drainage systems and slopes in badlands at Perth Ambos, New Jersey. Geological Society of America Bulletin, 67, 597–646.CrossRefGoogle Scholar
  57. Schumm, S. A. (1963). The sinuosity of alluvial rivers on the Great Plains. Geological Society of America Bulletin, 74, 1089–1100.CrossRefGoogle Scholar
  58. Schumm, S. A. (1977). Applied fluvial geomorphology. In J. R. Hails (Ed.), Applied geomorphology (pp. 119–156). Amsterdam: Elsevier Scientific Publishing Co.Google Scholar
  59. Schumm, S. A. (1986). Alluvial river response to active tectonics, studies in geophysics, active tectonics (pp. 80–94). Washington DC: National Academy Press.Google Scholar
  60. Schumm, S. A., Dumont, J. F., & Holbrook, J. M. (2002). Active tectonics and alluvial rivers. Cambridge: Cambridge University Press.Google Scholar
  61. Seidl, M. A., & Dietrich, W. E. (1992). The problem of channel erosion into bedrock. CATENA, 23, 101–124.Google Scholar
  62. Sinha-Roy, A. (2001). Neotectonically controlled catchment capture: An example from the Banas and Chambal drainage basins, Rajasthan. Current Science, 80, 293–298.Google Scholar
  63. Stern, C. R. (2004). Active Andean volcanism: It’s geologic and tectonic setting. Revista Geológica de Chile, 31, 161–206.  https://doi.org/10.4067/S0716-02082004000200001.CrossRefGoogle Scholar
  64. Stipanicic, P. N. (2002). Introducción. In P. N. Stipanicic & C. Marsicano (Eds.), Léxico Estratigráfico de la Argentina: Triásico (Vol. 8, Serie “B” (Didáctica y Complementaria), pp. 1–24). Asociación Geológica Argentina).Google Scholar
  65. Strahler, A. N. (1964). Quantitative geomorphology of drainage basin and channel networks. In V. T. Chow (Ed.), Handbook of applied hydrology (pp. 4–76). New York: McGraw Hill.Google Scholar
  66. Summerfield, M. (1991). Global geomorphology: An introduction to the study of landforms (p. 537p). Harlow: Longman.Google Scholar
  67. Suvires, G., Mon, R., & Gutiérrez, A. (2012). Tectonic effects on the drainage disposition in mountain slopes and orogeny forelands. A case study: the Central Andes of Argentina. Revista Brasileira de Geociências, 42, 229–239.CrossRefGoogle Scholar
  68. Uliana, M., Biddle, K., & Cerdan, J. (1989). Mesozoic extension and the formation of Argentina sedimentary basins. In A. J. Tankard & H. R. Balkwill (Eds.), Extensional tectonics and stratigraphy of the North Atlantic margins (Vol. 46, pp. 599–614). Tulsa: American Association of Petroleum Geologists.Google Scholar
  69. Vigny, C., Rudloff, A., Ruegg, J. C., Madariaga, R., Campos, J., & Alvarez, M. (2009). Upper plate deformation measured by GPS in the Coquimbo Gap, Chile. PEPI, 175, 86–95.Google Scholar
  70. Whipple, K. (2004). Bedrock rivers and the geomorphology of active orogens. Annual Reviews in Earth and Planetary Science, 32, 151–185.  https://doi.org/10.1016/j.epsl.2005.12.022.CrossRefGoogle Scholar
  71. Whipple, K., & Tucker, G. (1999). Dynamics of the stream power river incision model: Implications for height limits of mountain ranges, landscape response timescales and research needs. Journal of Geophysical Research, 104, 17661–17674.  https://doi.org/10.1029/1999jb900120.CrossRefGoogle Scholar
  72. Yáñez, G., Ranero, G. R., von Huene, R., & Díaz, J. (2001). Magnetic anomaly interpretation across a segment of the Southern Central Andes (32–34°S): implications on the role of the Juan Fernández Ridge in the tectonic evolution of the margin during upper Tertiary. Journal of Geophysical Research, 106, 6325–6345.CrossRefGoogle Scholar
  73. Yanites, B., Ehlers, T., Becker, J., Schnellmann, M., & Heuberge, S. (2013). High magnitude and rapid incision from river capture: Rhine River, Switzerland. Journal of Geophysical Research: Earth Surface, 118(1060–1084), 2013.  https://doi.org/10.1002/jgrf.20056.Google Scholar
  74. Yatsu, E. (1955). On the longitudinal profile of the graded river. Transactions, American Geophysical Union, 36, 655–663.CrossRefGoogle Scholar
  75. Zapata, T. R., & Allmendinger, R. W. (1996). Thrust front zone of the Precordillera, Argentina: A thick-skinned triangle zone. Bulletin of the American Association of Petroleum Geologists, 80, 350–381.Google Scholar
  76. Zárate, M. (2003). Loess of southern South America. Quaternary Science Reviews, 22, 1987–2006.  https://doi.org/10.1016/s0277-3791(03)00165-3.CrossRefGoogle Scholar
  77. Ziegler, P. A., & Fraefel, M. (2009). Response of drainage systems to Neogene evolution of the Jura fold-thrust belt and Upper Rhine Graben, Swiss. Journal of Geosciences, 102, 57–75.  https://doi.org/10.1007/s00015-009-1306-4.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Laura P. Perucca
    • 1
    • 2
  • Karen Espejo
    • 1
    • 2
  • María Yanina Esper Angillieri
    • 1
  • Martín Rothis
    • 1
    • 2
  • Flavia Tejada
    • 1
  • Mariana Vargas
    • 2
  1. 1.INGEO-CIGEOBIO, Gabinete de Neotectónica y Geomorfología. Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de San Juan, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)San JuanArgentina
  2. 2.Departamento Geología, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de San JuanSan JuanArgentina

Personalised recommendations