Skip to main content
Log in

Late Miocene vertical movements in the Sierra Nevada and Granada Basin linking zone (Betic Cordillera, Spain): insights from marine microfossils

  • Research paper
  • Published:
Journal of Iberian Geology Aims and scope Submit manuscript

Abstract

Purpose

Marine microfossils, specifically planktonic and benthic foraminifera, are a valuable tool to constrain the age (biostratigraphy) and water depth (paleobathymetry) of the sedimentary record in the Granada Basin. Using both data sources, our study has aimed to illustrate the history of the vertical movements in the tectonically uplifted sectors of this basin that currently form part of the relief of the Sierra Nevada.

Methods

The stratigraphic sections of Baños and Cerro Sevilla have been chosen to constrain the age and extent of the vertical movements on the eastern margin of the Granada Basin, adjacent to the Sierra Nevada. The subsidence and uplift rates have been calculated for the Baños and Cerro Sevilla sectors using the stratigraphic thickness of the marine units and applying paleobathymetric and eustatic corrections.

Discussion and Conclusions

Significantly, the western border of the Sierra Nevada (at the present-day elevation of 1425 m) contains the deepest marine sediments (bathyal domain) from the upper Miocene (7.84 Ma; late Tortonian) of the entire Betic Cordillera. This sector, and others nearby, has an uplift rate of around 245 m/Ma, in stark contrast to the uplift rate of about 142 m/Ma at the centre of the Granada Basin. This difference is related to the activity of high-angle faults bounding the Granada Basin, with a displacement of over 1000 m from the late Miocene to the present day. In addition, the dating of sedimentary events has constrained the age of the tectonic uplift and exhumation of the Nevado-Filabride Complex (the lowest structural level of the Sierra Nevada) at 7.69 Ma, which is registered in the Granada Basin by the sudden appearance of coarse-grained delta systems containing huge blocks (up to 1 m3) from this complex. Our procedures based on marine microfossils are meant as a complement to other recently applied methods such as thermochronometers, which are used to decipher the tectonic processes and creation of mountain relief in the Betic Cordillera.

Resumen

Objetivo

Los microfósiles marinos, en particular los foraminíferos planctónicos y bentónicos, son una valiosa herramienta para precisar la edad (bioestratigrafía) y la profundidad de agua (paleobatimetría) del registro sedimentario de la Cuenca de Granada. Usando ambas fuentes de datos, nuestro estudio se ha centrado en ilustrar la historia de movimientos verticales de los sectores tectónicamente levantados de esta cuenca, y que actualmente forman parte de los relieves de Sierra Nevada occidental.

Métodos

Con objeto de precisar la edad y magnitud de movimientos verticales que acaecieron en el margen este de la Cuenca de Granada, donde se localiza Sierra Nevada, han sido seleccionadas las secciones estratigráficas denominadas Baños y Cerro Sevilla. Para ambas secciones se ha calculado la subsidencia/levantamiento de los sectores de Baños y Cerro Sevilla mediante los espesores estratigráficos de las unidades marinas, aplicando correcciones paleobatimétricas y eustáticas.

Discusión y Conclusiones

Como dato significativo, en el interior de Sierra Nevada (a 1425 metros de altitud) se localizan los sedimentos marinos más profundos (dominio batial) del Mioceno superior (7.84 Ma) a escala de toda la Cordillera Bética. Este caso, y otros próximos, ilustran una tasa de levantamiento de ca. 245 m/Ma. Esta tasa de levantamiento contrasta con la del centro de la Cuenca de Granada, cuyo valor es de ca. 142 m/Ma. Esta diferencia está relacionada con la actividad de las fallas de alto ángulo que limitan la Cuenca de Granada respecto a Sierra Nevada, cuyo desplazamiento supera 1000 metros desde el Mioceno Superior hasta la actualidad. Adicionalmente, mediante la datación de eventos sedimentarios se ha precisado en 7.69 Ma la edad del levantamiento y exhumación tectónica del Complejo Nevado-Filábride (el nivel estructural inferior de Sierra Nevada), que ha quedado registrado en la Cuenca de Granada por la súbita aparición de sistemas deltaicos de grano grueso que incluyen grandes bloques (que superan 1m3) derivados de este complejo. Nuestros procedimientos basados en microfósiles marinos son complementarios a otros métodos de reciente aplicación, como es el caso de los termocronómetros, usados para descifrar los procesos tectónicos y creación de relieves montañosos en la Cordillera Bética.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Azañón, J. M., Galve, J. P., Pérez-Peña, J. V., Giaconia, F., Carvajal, R., Booth-Rea, G., et al. (2015). Relief and drainage evolution during the exhumation of the Sierra Nevada (SE Spain): Is denudation keeping pace with uplift? Tectonophysics, 663, 19–32.

    Article  Google Scholar 

  • Booth-Rea, G., Rodríguez-García, G., Pérez-Peña, J. V., Azañón, J. V., Della Seta, M., & Giaconia, F. (2015). Morphotectonic analysis of the active región of the Sierra Nevada elongated extensional dome. Granada: XIV Reunión Nacional de Cuaternario.

    Google Scholar 

  • Braga, J. C., Martin, J. M., & Alcala, B. (1990). Coral reefs in coarse-terrigenous sedimentary environments (Upper Tortonian, Granada Basin, southern Spain). Sedimentary Geology, 66(1–2), 135–150.

    Article  Google Scholar 

  • Braga, J. C., Martín, J., & Quesada, C. (2003). Patterns and average rates of late Neogene–Recent uplift of the Betic Cordillera, SE Spain. Geomorphology, 50, 3–26.

    Article  Google Scholar 

  • Braga, J. C., Martín, J. M., Riding, R., Aguirre, J., Sánchez-Almazo, I. M., & Dinarès-Turell, J. (2006). Testing models for the Messinian salinity crisis: the Messinian record in Almería, SE Spain. Sedimentary Geology, 188, 131–154.

    Article  Google Scholar 

  • Clark, S. J. P., & Dempster, T. J. (2009). The record of tectonic denudation and erosion in an emerging orogen: an apatite fission-track study of the Sierra Nevada, southern Spain. Journal of the Geological Society, London, 166, 87–100.

    Article  Google Scholar 

  • Corbí, H., Lancis, C., García-García, F., Pina, J. A., Soria, J. M., Tent-Manclús, J. E., & Viseras, C. (2012). Updating the marine biostratigraphy of the Granada Basin (central Betic Cordillera). Insight for the Late Miocene palaeogeographic evolution of the Atlantic—Mediterranean seaway. Geobios, 45, 249–263.

    Article  Google Scholar 

  • Corbí, H., & Soria, J. M. (2016). Late Miocene–early Pliocene planktonic foraminifer event-stratigraphy of the Bajo Segura basin: A complete record of the western Mediterranean. Marine and Petroleum Geology, 77, 1010–1027.

    Article  Google Scholar 

  • Corbí, H., Soria, J. M., Lancis, C., Giannetti, A., Tent-Manclús, J. E., & Dinarès-Turell, J. (2016). Sedimentological and paleoenvironmental scenario before, during, and after the Messinian Salinity Crisis: The San Miguel de Salinas composite section (western Mediterranean). Marine Geology, 379, 246–266.

    Article  Google Scholar 

  • Dabrio, C. J., García Yebra, R., González Donoso, J. G., & Vera, J. A. (1972). Turbiditas asociadas a evaporitas (Mioceno, La Mala, depresión de Granada). Cuadernos Geológicos, 3, 139–164.

    Google Scholar 

  • Fernández, J., & Rodríguez-Fernández, J. (1991). Facies evolution of nearshore marine clastic deposits during the Tortonian transgression—Granada Basin, Betic Cordilleras, Spain. Sedimentary Geology, 71(1–2), 5–21.

    Article  Google Scholar 

  • Fernández, J., Soria, J. M., & Viseras, C. (1996). Stratigraphic architecture of the Neogene basins in the central sector of the Betic Cordillera (Spain): Tectonic control and base level changes. In P. F. Friend & C. J. Dabrio (Eds.), Tertiary basins of Spain: The stratigraphic record of crustal kinematics (pp. 353–365). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Galindo-Zaldívar, J., Gonzalez-Lodeiro, F., & Jabaloy, A. (1989). Progressive extensional shear structures in a detachment contact in the western Sierra Nevada, (Betic Cordilleras, Spain). Geodinamica Acta, 3, 73–85.

    Article  Google Scholar 

  • García-Alix, A., Minwer-Barakat, R., Martín, J. M., Martín Suárez, E., & Freudenthal, M. (2008). Biostratigraphy and sedimentary evolution of Late Miocene and Pliocene continental deposits of the Granada Basin (southern Spain). Lethaia, 41, 431–446.

    Article  Google Scholar 

  • García-García, F. (2003). Modelos de sedimentación deltaica en las cuencas neógenas de la Cordillera Bética (sectores central y oriental). PhD Thesis, Granada.

  • García-García, F., Viseras, C., & Fernández, J. (1999). Organización secuencial de abanicos deltaicos controlados por la tectónica (Tortoniense superior, Cuenca de Granada, Cordillera Bética). Revista de la Sociedad Geológica de España, 12, 199–208.

    Google Scholar 

  • García-Hernández, M., López-Garrido, A. C., Rivas, P., Sanz de Galdeano, C., & Vera, J. A. (1980). Mesozoic palaeogeographic evolution of the external zones of the Betic Cordillera. Geologie en Mijnbouw, 59, 155–168.

    Google Scholar 

  • González Donoso, J.M. (1977–1978). Los materiales miocénicos de la Depresión de Granada. Cuadernos de Geología de la Universidad de Granada, 8/9, 191–203.

  • Gradstein, F. M., Ogg, J. G., Schmitz, M., & Ogg, G. (Eds.). (2012). The geologic time scale 2012. Elsevier.

  • Haq, B. U., Hardenbol, J., & Vail, P. R. (1987). Chronology of fluctuating sea levels since the Triassic. Science, 235, 1156–1167.

    Article  Google Scholar 

  • Hardie, L., & Eugster, H. (1971). Depositional environment of marine evaporites: a case for shallow, clastic accumulation. Sedimentology, 16, 187–220.

    Article  Google Scholar 

  • Iaccarino, S. M., Premoli Silva, I., Biolzi, M., Foresi, L. M., Lirer, F., Turco, E., & Petrizzo, M. R. (2007). Practical manual of Neogene planktonic foraminifera. International School on Planktonic Foraminifera, 6th course. Perugia: Università degli Studi di Perugia.

    Google Scholar 

  • Iribarren, L., Vergés, J., & Fernàndez, M. (2009). Sediment supply from the Betic-Rif orogen to basin through Neogene. Tectonophysics, 475, 68–84.

    Article  Google Scholar 

  • Johnson, C., Harbury, N., & Hurford, A. J. (1997). The role of extension in the Miocene denudation of the Nevado-Filábride, Betic Cordillera (SE Spain). Tectonics, 16, 189–204.

    Article  Google Scholar 

  • Kendall, A.C. (1992). Evaporites. In R.G. Walker, N.P. James (Eds.) Facies Models: Responses to sea level change (pp. 375–409). Geological Association of Canada

  • Krijgsman, W., Fortuin, A. R., Hilgen, F. J., & Sierro, F. J. (2001). Astrochronology for the Messinian Sorbas basin (SE Spain) and orbital (precessional) forcing for evaporite cyclicity. Sedimentary Geology, 140(1), 43–60.

    Article  Google Scholar 

  • Lourens, L., Hilgen, F., Shackleton, N. J., Laskar, J., & Wilson, D. (2004). The Neogene period. In F. M. Gradstein, J. G. Ogg, & A. G. Smith (Eds.), A geologic time scale (pp. 409–440). Cambridge: Cambridge University Press.

    Google Scholar 

  • Martín, J. M., Ortega-Huertas, M., & Torres-Ruiz, J. (1984). Genesis and evolution of strontium deposits of the Granada Basin (southeastern Spain): Evidence of diagenetic replacement of a stromatolite belt. Sedimentary Geology, 39, 281–298.

    Article  Google Scholar 

  • Martín Pérez, J. A., & Viseras, C. (1994). Sobre la posición estratigráfica de las “Margas de Gor”, Sierra de Baza, Cordillera Bética. Geogaceta, 15, 63–66.

    Google Scholar 

  • Martínez-Martínez, J. M. (2016). Lateral interaction between metamorphic core complexes and less-extended, tilt-block domains: the Alpujarras strike-slip transfer fault zone (Betics, SE Spain). Journal of Structural Geology, 28, 602–620.

    Article  Google Scholar 

  • Martínez-Martínez, J. M., Soto, J. I., & Balanyá, J. C. (2002). Orthogonal folding of extensional detachments: Structure and origin of the Sierra Nevada elongated dome (Betics, SE Spain). Tectonics, 21–3, 1–20.

    Google Scholar 

  • Morales, J., Serrano, I., Jabaloy, A., Galindo-Zaldívar, J., Zhao, D., Torcal, F., Vidal, F. González Lodeiro, F. (1999). Active continental subduction beneath the Betic Cordillera and the Alborán Sea. Geology, 27, 735–738.

    Article  Google Scholar 

  • Morigi, C., Negri, A., Giunta, S., Kouwenhoven, T., Krijgsman, W., Blanc-Valleron, M. M., et al. (2007). Integrated quantitative biostratigraphy of the latest Tortonian-early Messinian Pissouri section (Cyprus): an evaluation of calcareous plankton bioevents. Geobios, 40, 267–279.

    Article  Google Scholar 

  • Pérez-Peña, J., Azor, A., Azañón, J., & Keller, E. (2010). Active tectonics in the Sierra Nevada (Betic Cordillera, SE Spain): Insights from geomorphic indexes and drainage pattern analysis. Geomorphology, 119, 74–87.

    Article  Google Scholar 

  • Pierson, T. C. (2005). Distinguishing between debris flows and floods from field evidence in small watersheds. USGS Fact Sheet 2004-3142, U.S. Geological Survey.

  • Reinhardt, L. J., Dempster, T. J., Shroder, J. F., Jr., & Persano, C. (2007). Tectonic denudation and topographic development in the Spanish Sierra Nevada. Tectonics, 26, TC3001.

    Article  Google Scholar 

  • Rodríguez-Fernández, J. (1982). El Mioceno del Sector Central de las Cordilleras Béticas. PhD Thesis, Granada.

  • Rodríguez-Fernández, J., Comas, M. C., Soria, J., Martín-Pérez, J. A., & Soto, J. I. (1999). The sedimentary record of the Alborán Basin: Attempt of correlation and subsidence analysis. In R. Zahn, M. C. Comas, & A. Klaus (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 61 (pp. 69–76). College Station: EEUU Ocean Drilling Program.

    Google Scholar 

  • Rodríguez-Fernández, J., & Sanz de Galdeano, C. (2006). Late orogenic intramontane basin development: the Granada basin, Betics (southern Spain). Basin Research, 18, 85–102.

    Article  Google Scholar 

  • Sanz de Galdeano, C. (1990). Geologic evolution of the Betic Cordilleras in the western Mediterranean, Miocene to the present. Tectonophysics, 172, 107–119.

    Article  Google Scholar 

  • Sanz de Galdeano, C. (1997). La Zona Interna Bético-Rifeña (Antecedentes, unidades tectónicas, correlaciones y bosquejo de reconstrucción paleogeográfica). Monográfica Tierras del Sur (p. 316). Granada: Universidad de Granada.

    Google Scholar 

  • Sanz de Galdeano, C., & Alfaro, P. (2004). Tectonic significance of the present relief of the Betic Cordillera. Geomorphology, 63, 178–190.

    Article  Google Scholar 

  • Sanz de Galdeano, C., García-Tortosa, F. J., Peláez, J. A., Alfaro, P., Azañón, J. M., Galindo-Zaldívar, J., López Casado, C., López Garrido, A. C., Rodríguez-Fernández, J., Ruano, P. (2012). Main active faults in the Granada and Guadix-Baza Basins (Betic Cordillera)/Principales fallas activas de las Cuencas de Granada y Guadix-Baza (Cordillera Bética). Journal of Iberian Geology, 38(1), 209–223.

    Article  Google Scholar 

  • Sanz de Galdeano, C., & López-Garrido, A. C. (1999a). Estratigrafía y estructura de las unidades alpujárrides en el borde occidental de Sierra Nevada (Granada, España). Revista de la Sociedad Geológica de España, 12, 187–198.

    Google Scholar 

  • Sanz de Galdeano, C., & López-Garrido, A. C. (1999b). Nature and impact of the Neotectonic deformation in the western Sierra Nevada (Spain). Geomorphology, 30, 259–272.

    Article  Google Scholar 

  • Sanz de Galdeano, C., & López-Garrido, A. C. (2000). Las fallas tortonienses a cuaternarias entre Granada y la costa: el límite occidental del Nevado-Filábride y de las unidades alpujárrides inferiores. Revista de la Sociedad Geológica de España, 13, 516–528.

    Google Scholar 

  • Sanz de Galdeano, C., & Vera, J. A. (1992). Stratigraphic record and palaeogeographical context of the Neogene basins in the Betic Cordillera, Spain. Basin Research, 4, 21–36.

    Article  Google Scholar 

  • Soria, J. M. (1994). Sedimentación y tectónica durante el Mioceno en la región Sierra Arana—Mencal y su relación con la evolución geodinámica de la Cordillera Bética. Revista de la Sociedad Geológica de España, 7, 199–213.

    Google Scholar 

  • Soria, J. M. (1998). La Cuenca de Antepaís Norbética en la Cordillera Bética Central (sector del Mencal): Evolución tectosedimentaria e historia de la subsidencia. Revista de la Sociedad Geológica de España, 11, 23–31.

    Google Scholar 

  • Soria, J., Viseras, C., & Fernández, J. (1998). Late Miocene-Pleistocene tectono- sedimentary evolution and subsidence history of the central Betic Cordillera (Spain): A case study in the Guadix intramontane basin. Geological Magazine, 135, 565–574.

    Article  Google Scholar 

  • Van Der Zwaan, G. J., Jorissen, F. J., & De Stigter, H. C. (1990). The depth dependency of planktonic/benthic foraminiferal ratios: Constraints and applications. Marine Geology, 95(1), 1–16.

    Article  Google Scholar 

  • Van Hinsbergen, D. J. J., Kouwenhoven, T. J., & Van Der Zwaan, G. J. (2005). Paleobathymetry in the backstripping procedure: Correction for oxygenation effects on depth estimates. Palaeogeography, Palaeoclimatology, Palaeoecology, 221(3), 245–265.

    Article  Google Scholar 

  • Vázquez, M., Jabaloy, A., Barbero, L., & Stuart, F. M. (2011). Deciphering tectonic- and erosion-driven exhumation of the Nevado-Filábride Complex (Betic Cordillera, Southern Spain) by low temperature thermochronology. Terra Nova, 23, 257–263.

    Article  Google Scholar 

  • Wright, R. (1978). 41. Neogene paleobathymetry of the Mediterranean based on benthic foraminifers from DSDP Leg 42a. Initial Reports DSDP, 42, 837–847.

    Google Scholar 

Download references

Acknowledgements

This paper is dedicated to our friend and colleague Jorge Civis Llovera. This paper was written in the context of the Paleoenvironmental Changes research group (vigrob-167) and supported by project GRE14-05 (University of Alicante). The authors wish to thank anonymous referees for their valuable suggestions and critical comments, which have improved the quality of this paper. Thanks also to Christine Laurin for revising the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Corbí.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corbí, H., Peral, J.J., Pérez-Valera, F. et al. Late Miocene vertical movements in the Sierra Nevada and Granada Basin linking zone (Betic Cordillera, Spain): insights from marine microfossils. J Iber Geol 43, 615–630 (2017). https://doi.org/10.1007/s41513-017-0042-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41513-017-0042-2

Keywords

Palabras clave

Navigation