Ichnological evidence of a horseshoe crab hot-spot in the Early Triassic Buntsandstein continental deposits from the Catalan Pyrenees (NE Iberian Peninsula)

  • Eudald Mujal
  • Zain Belaústegui
  • Josep Fortuny
  • Arnau Bolet
  • Oriol Oms
  • José Ángel López
Article

Abstract

Purpose

Xiphosurids (horseshoe crabs) are aquatic chelicerate arthropods commonly related to marine environments. Although today only four marine species exist, in the geological record they were much more diverse (especially during Carboniferous and Triassic periods), and even inhabited non-marine settings. Here we analyze an exceptional xiphosurid trace-fossil site preserved in the lowermost Buntsandstein red-beds from the Early Triassic of the Catalan Pyrenees.

Methods

Ichnological and sedimentological analyses were mainly conducted during fieldwork. Fossiliferous surfaces were cleaned and mapped in order to recognize distribution and orientation patterns.

Results

Two main ichnotaxa were identified: (1) Selenichnites isp. (>400 trace fossils), consisting of a lunate, anteriorly convex lobe (prosoma imprint) followed by a rounded to triangular impression (opisthosoma imprint) and a posterior straight thin groove (telson imprint); and (2) Kouphichnium isp. (about 70 trace fossils), consisting of long (up to 2 m), often curved, complex series of parallel rows of morphologically variable tracks and imprints.

Conclusions

Selenichnites isp., interpreted as resting and/or feeding traces (cubichnia/fodinichnia), were mostly oriented against the current, preventing tracemakers being overturned. Kouphichnium isp. correspond to locomotion traces (repichnia). Trace fossils are found at the uppermost succession of fining- and energy decreasing- upwards fluvial red beds with no marine influence. These ichnofossils are the earliest Triassic evidence of life from the Catalan Pyrenees, and thus shed light on ecosystems composition at the dawn of the Mesozoic era, when biota recovered from the greatest mass extinction in Earth history.

Keywords

Xiphosurida Ichnology Bioturbation Freshwater Western Tethys Late Olenekian 

Resumen

Objetivo

Los xifosúridos (cangrejos herradura) son artrópodos quelicerados acuáticos comúnmente relacionados con ambientes marinos. Aunque hoy en día solamente existen cuatro especies marinas, eran mucho más diversos en el registro geológico (especialmente durante los períodos Carbonífero y Triásico), e incluso habitaron ambientes no-marinos. En este trabajo analizamos un yacimiento excepcional de trazas fósiles de xifosúridos preservadas en la parte basal de las capas rojas del Buntsandstein, Triásico Inferior de los Pirineos Catalanes.

Métodos

Los análisis icnológicos y sedimentológicos se realizaron principalmente durante el trabajo de campo. Las superficies fosilíferas se limpiaron y cartografiaron para identificar patrones de distribución y orientación.

Resultados

Se han identificado dos icnotaxones principales: (1) Selenichnites isp. (>400 trazas fósiles), que consiste en un lóbulo con forma de luna y convexo en su parte anterior (impresión del prosoma), seguido de una impresión de forma redondeada a triangular (impresión del opistosoma) y un surco posterior, recto y delgado (impresión del telson); y (2) Kouphichnium isp. (alrededor de 70 trazas fósiles) que consiste en una compleja serie de huellas e improntas de morfología variable, que se disponen en hileras paralelas (de hasta 2 m de longitud) y que frecuentemente tienen trayectorias curvas.

Conclusiones

Los icnofósiles Selenichnites isp., interpretados como trazas de reposo y/o alimentación (cubichnia/fodinichnia), están mayoritariamente orientados en contra de la corriente; hecho que podría indicar la evitación a ser volteados por parte de los productores. Los ejemplares identificados como Kouphichnium isp. corresponden a trazas de locomoción (repichnia). Las trazas fósiles se encuentran en la parte superior de una sucesión granoy energético-decreciente de las capas rojas fluviales y sin ninguna influencia marina. Estos icnofósiles son la primera evidencia de vida del Triásico de los Pirineos Catalanes, y por lo tanto aportan nuevos datos sobre la composición de los ecosistemas en el comienzo de la era Mesozoica, cuando la biota se recuperó de la mayor extinción en masa de la historia de la Tierra.

Palabras clave

Xiphosurida Icnología Bioturbación Agua dulce Tethys Oeste Olenekiense superior 

References

  1. Alberti, M., Fürsich, F. T., & Pandey, D. K. (2016). First record of a xiphosuran trackway (Kouphichnium isp.) from the Jurassic of India. Paläontologische Zeitschrift. doi:10.1007/s12542-016-0331-7.
  2. Algeo, T. J., Chen, Z. Q., Fraiser, M. L., & Twitchett, R. J. (2011). Terrestrial–marine teleconnections in the collapse and rebuilding of Early Triassic marine ecosystems. Palaeogeography, Palaeoclimatology, Palaeoecology, 308(1–2), 1–11.CrossRefGoogle Scholar
  3. Bourquin, S., Bercovici, A., López-Gómez, J., Diez, J. B., Broutin, J., Ronchi, A., et al. (2011). The Permian–Triassic transition and the onset of Mesozoic sedimentation at the northwestern peri-Tethyan domain scale: Palaeogeographic maps and geodynamic implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 299(1–2), 265–280.CrossRefGoogle Scholar
  4. Bridge, J. S., & Lunt, I. A. (2006). Depositional models of braided rivers. In G. H. Sambrook Smith, J. L. Best, C. S. Bristow, & G. E. Petts (Eds.), Braided rivers: Process, deposits, ecology and management (pp. 11–50). Oxford: Blackwell Publishing Ltd.CrossRefGoogle Scholar
  5. Buatois, L. A., Mángano, M. G., Maples, C. G., & Lanier, W. P. (1998). Ichnology of an Upper Carboniferous fluvio-estuarine paleovalley: The Tonganoxie Sandstone, Buildex Quarry, eastern Kansas, USA. Journal of Paleontology, 72(1), 152–180.CrossRefGoogle Scholar
  6. Buhler, P. B., & Grey, M. (2016). Xiphosuran digging traces at the Late Carboniferous Joggins Fossil Cliffs UNESCO World Heritage Site, Nova Scotia, Canada. Ichnos. doi:10.1080/10420940.2016.1244055.
  7. Calvet, F., Solé de Porta, N., & Salvany, J. M. (1993). Cronoestratigrafía (Palinología) del Triásico sudpirenaico y del Pirineo Vasco-Cantábrico. Acta Geológica Hispánica, 28(4), 33–48.Google Scholar
  8. Cant, D. J., & Walker, R. G. (1978). Fluvial processes and facies sequences in the sandy braided South Saskatchewan River, Canada. Sedimentology, 25, 625–648.CrossRefGoogle Scholar
  9. Caster, K. E. (1938). A restudy of the tracks of Paramphibius. Journal of Paleontology, 12(1), 3–60.Google Scholar
  10. De la Horra, R., Galán-Abellán, A. B., López-Gómez, J., Sheldon, N. D., Barrenechea, J. F., Luque, F. J., et al. (2012). Paleoecological and paleoenvironmental changes during the continental Middle-Late Permian transition at the SE Iberian Ranges, Spain. Global and Planetary Change, 94–95, 46–61.CrossRefGoogle Scholar
  11. Demathieu, G., Gand, G., & Toutin-Morin, N. (1992). La palichnofaune des bassins Permiens Provençaux. Geobios, 25(1), 19–54.CrossRefGoogle Scholar
  12. Diedrich, C. G. (2011). Middle Triassic horseshoe crab reproduction areas on intertidal flats of Europe with evidence of predation by archosaurs. Biological Journal of the Linnean Society, 103, 76–105.CrossRefGoogle Scholar
  13. Ezcurra, M. D., Fortuny, J., Mujal, E., & Bolet, A. (accepted). First archosauromorph direct remains from the Early-Middle Triassic transition of the Iberian Peninsula. Palaeontologia Electronica.Google Scholar
  14. Fernández, D. E., & Pazos, P. J. (2013). Xiphosurid trackways in a Lower Cretaceous tidal flat in Patagonia: Palaeoecological implications and the involvement of microbial mats in trace-fossil preservation. Palaeogeography, Palaeoclimatology, Palaeoecology, 375, 16–29.CrossRefGoogle Scholar
  15. Fortuny, J., Bolet, A., Sellés, A. G., Cartanyà, J., & Galobart, À. (2011). New insights on the Permian and Triassic vertebrates from the Iberian Peninsula with emphasis on the Pyrenean and Catalonian basins. Journal of Iberian Geology, 37(1), 65–86.CrossRefGoogle Scholar
  16. Gaillard, C. (2011). A giant limulid trackway (Kouphichnium lithographicum) from the lithographic limestones of Cerin (late Kimmeridgian, France): Ethological and environmental implications. Swiss Journal of Geosciences, 104(Suppl. 1), S57–S72.CrossRefGoogle Scholar
  17. Gisbert, J. (1981). Estudio geológico-petrológico del Estefaniense-Pérmico de la Sierra del Cadí (Pirineo de Lérida): Diagénesis y sedimentología. Ph.D. Thesis. University of Zaragoza.Google Scholar
  18. Gisbert, J., Martí, J., & Gascón, F. (1985). Guía de la excursión al Stephaniense, Pérmico y Triásico inferior del Pirineo catalán. II Coloquio de estratigrafía y paleogeografía del Pérmico y Triásico de España, p. 79.Google Scholar
  19. Goldring, R., & Seilacher, A. (1971). Limulid undertracks and their sedimentological implications. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 137(3), 422–442.Google Scholar
  20. Gretter, N., Ronchi, A., López-Gómez, J., Arche, A., De la Horra, R., Barrenechea, J. F., et al. (2015). The late Palaeozoic-early Mesozoic from the Catalan Pyrenees (Spain): 60 Myr of environmental evolution in the frame of the western peri-Tethyan palaeogeography. Earth-Science Reviews, 150, 679–708.CrossRefGoogle Scholar
  21. Häntzschel, W. (1975). Trace fossils and problematica. In C. Teichert (Ed.), Treatise on Invertebrate Paleontology, Part W, Miscellanea, Supplement 1 (p. 269). Kansas: Geological Society of America and University of Kansas Press, Boulder, Colorado and Lawrence.Google Scholar
  22. Hauschke, N., & Wilde, V. (1991). Zur Verbreitung und Ökologie mesozoicher Limuliden. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 183(1–3), 391–411.Google Scholar
  23. Hitchcock, E. (1858). Ichnology of New England. A report on the sandstone of the Connecticut valley, especially its fossil footmarks (p. 220). Boston: W. Whyte.Google Scholar
  24. Kin, A., & Błażejowski, B. (2014). The horseshoe crab of the genus Limulus: Living fossil or stabilomorph? PLoS One, 9, e108036. doi:10.1371/journal.pone.0108036.CrossRefGoogle Scholar
  25. Kustatscher, E., Franz, M., Heunisch, C., Reich, M., & Wappler, T. (2014). Floodplain habitats of braided river systems: Depositional environment, flora and fauna of the Solling Formation (Buntsandstein, Lower Triassic) from Bremke and Fürstenberg (Germany). Palaeobiodiversity and Palaeoenvironments, 94(2), 237–270.CrossRefGoogle Scholar
  26. Lamsdell, J. C. (2016). Horseshoe crab phylogeny and independent colonizations of fresh water: Ecological invasion as a driver for morphological innovation. Palaeontology, 59(2), 181–194.CrossRefGoogle Scholar
  27. Lerner, A. J., Lucas, S. G., & Mansky, C. F. (2016). The earliest paleolimulid and its attributed ichnofossils from the Lower Mississippian (Tournaisian) Horton Bluff Formation of Blue Beach, Nova Scotia, Canada. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 280(2), 193–214.CrossRefGoogle Scholar
  28. Lomax, D. R., & Racay, C. A. (2012). A long mortichnial trackway of Mesolimulus walchi from the Upper Jurassic Solnhofen Lithographic Limestone near Wintershof. Germany. Ichnos, 19(3), 175–183.CrossRefGoogle Scholar
  29. Martí, J. (1983). La formación volcánica estefaniense Erill Castell (Pirineo de Lérida). Acta Geológica Hispánica, 18(1), 27–33.Google Scholar
  30. Martin, A. J., & Rindsberg, A. K. (2007). Arthropod tracemakers of Nereites? Neoichnological observations of juvenile limulids and their paleoichnological applications. In W. Miller III (Ed.), Trace fossils: Concepts, problems, prospects (pp. 478–491). Amsterdam: Elsevier.CrossRefGoogle Scholar
  31. Miall, A. D. (1985). Architectural-element analysis: A new method of facies analysis applied to fluvial deposits. Earth-Science Reviews, 22(4), 261–308.CrossRefGoogle Scholar
  32. Miall, A. D. (1992). Alluvial deposits. In R. G. Walker & N. P. James (Eds.), Facies models (pp. 119–142). Kingston: Geological Association of Canada Publications.Google Scholar
  33. Miller, M. F. (1982). Limulicubichnus: A new ichnogenus of limulid resting traces. Journal of Paleontology, 56(2), 429–433.Google Scholar
  34. Moore, R. A., McKenzie, S. C., & Lieberman, B. S. (2007). A Carboniferous synziphosurine (Xiphosura) from the Bear Gulch Limestone, Montana, USA. Palaeontology, 50(4), 1013–1019.CrossRefGoogle Scholar
  35. Mujal, E., Fortuny, J., Bolet, A., Oms, O., & López, J. Á. (2017). An archosauromorph dominated ichnoassemblage in fluvial settings from the late Early Triassic of the Catalan Pyrenees (NE Iberian Peninsula). PLoS One, 12(4), e0174693. doi:10.1371/journal.pone.0174693.CrossRefGoogle Scholar
  36. Mujal, E., Gretter, N., Ronchi, A., López-Gómez, J., Falconnet, J., Diez, J. B., et al. (2016). Constraining the Permian/Triassic transition in continental environments: Stratigraphic and paleontological record from the Catalan Pyrenees (NE Iberian Peninsula). Palaeogeography, Palaeoclimatology, Palaeoecology, 445, 18–37.CrossRefGoogle Scholar
  37. Nopsca, F. (1923). Die Familien der Reptilien. Fortschritte in der Geologie und Paläontologie, 2, 1–210.Google Scholar
  38. Pereira, M. F., Castro, A., Chichorro, M., Fernández, C., Díaz-Alvarado, J., Martí, J., et al. (2014). Chronological link between deep-seated processes in magma chambers and eruptions: Permo-Carboniferous magmatism in the core of Pangaea (southern Pyrenees). Gondwana Research, 25(1), 290–308.CrossRefGoogle Scholar
  39. Pickett, J. W. (1984). A new freshwater limuloid from the Middle Triassic of New South Wales. Palaeontology, 27(3), 609–621.Google Scholar
  40. Poiré, D. G., & Del Valle, A. (1996). Trazas fósiles en barras submareales de la Formación Balcarce (Cambro/Ordovícico), Cabo Corrientes, Mar del Plata, Argentina. Asociación Paleontológica Argentina, Publicación Especial, 4, 89–102.Google Scholar
  41. Romano, M., & Whyte, M. A. (1987). A limulid trace fossil from the Scarborough Formation (Jurassic) of Yorkshire: Its occurrence, taxonomy and interpretation. Proceedings of the Yorkshire Geological Society, 46, 85–95.CrossRefGoogle Scholar
  42. Romano, M., & Whyte, M. A. (1990). Selenichnites, a new name for the ichnogenus Selenichnus Romano and Whyte, 1987. Proceedings of the Yorkshire Geological Society, 48(2), 221.CrossRefGoogle Scholar
  43. Romano, M., & Whyte, M. A. (2003). The first record of xiphosurid (arthropod) trackways from the Saltwick Formation, Middle Jurassic of the Cleveland Basin. Yorkshire. Palaeontology, 46(2), 257–269.CrossRefGoogle Scholar
  44. Romano, M., & Whyte, M. A. (2015). A review of the trace fossil Selenichnites. Proceedings of the Yorkshire Geological Society, 60, 275–288.CrossRefGoogle Scholar
  45. Rudkin, D. M., Young, G. A., & Nowlan, G. S. (2008). The oldest horseshoe crab: A new xiphosurid from Late Ordovician Konservat-Lagerstätten deposits, Manitoba. Canada. Palaeontology, 51(1), 1–9.CrossRefGoogle Scholar
  46. Saura, E. (2004). Anàlisi estructural de la zona de les Nogueres Pirineus Centrals. PhD Thesis, Universitat Autònoma de Barcelona.Google Scholar
  47. Saura, E., & Teixell, A. (2006). Inversion of small basins: Effects on structural variations at the leading edge of the Axial Zone antiformal stack (Southern Pyrenees, Spain). Journal of Structural Geology, 28(11), 1909–1920.CrossRefGoogle Scholar
  48. Seilacher, A. (2007). Trace fossil analysis (p. 226). Berlin: Springer.Google Scholar
  49. Speksnijder, A. (1985). Anatomy of a strike-slip fault controlled sedimentary basin, Permian of the southern Pyrenees, Spain. Sedimentary Geology, 44(3–4), 179–223.CrossRefGoogle Scholar
  50. Torsvik, T. H., & Cocks, L. R. M. (2013). Gondwana from top to base in space and time. Gondwana Research, 24(3–4), 999–1030.CrossRefGoogle Scholar
  51. Vallon, L. H., Rindsberg, A. K., & Martin, A. J. (2015). The use of the terms trace, mark and structure. Annales Societatis Geologorum Poloniae, 85(3), 527–528.Google Scholar
  52. Vía, L. (1987). Artrópodos fósiles triásicos de Alcover-Montral. II. Limúlidos. Cuadernos de Geología Ibérica, 11, 281–282.Google Scholar
  53. Wignall, P. B., Bond, D. P. G., Sun, Y., Grasby, S. E., Beauchamp, B., Joachimski, M. M., et al. (2016). Ultra-shallow-marine anoxia in an Early Triassic shallow-marine ramp (Spitsbergen) and the suppression of benthic radiation. Geological Magazine, 153(2), 316–331.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Departament de GeologiaUniversitat Autònoma de Barcelona (UAB)BellaterraSpain
  2. 2.Departament de Dinàmica de la Terra i de l’OceàUniversitat de Barcelona (UB)BarcelonaSpain
  3. 3.IRBio, Biodiversity Research InstituteUniversitat de Barcelona (UB)BarcelonaSpain
  4. 4.Centre de Recherches en Paléobiodiversité et Paléoenvironnements, Muséum National d’Histoire NaturelleBâtiment de Paléontologie, CP38ParisFrance
  5. 5.Institut Català de Paleontologia Miquel CrusafontCerdanyola del VallèsSpain
  6. 6.Geologist. Cal BirbeSorigueraSpain

Personalised recommendations