Journal of Iberian Geology

, Volume 43, Issue 2, pp 235–243 | Cite as

The conservative structure of the ornithopod eggshell: electron backscatter diffraction characterization of Guegoolithus turolensis from the Early Cretaceous of Spain

  • Miguel Moreno-Azanza
  • Blanca Bauluz
  • José Ignacio Canudo
  • Octávio Mateus
Research Article



The Spheroolithidae oospecies Guegoolithus turolensis, putatively attributed to non-hadrosauroid styracosterns was first described in the Barremian of the Iberian Basin, and later reported in the Valanginian–Hauterivian of the Cameros Basin, with both occurrences separated by a few hundred kilometres but by over 10 million years.


Here we apply electron backscatter diffraction to search for crystallographic and ultrastructural differences between both occurrences of this ootaxon.


Not only did not we found significant differences between eggshells from the two basins, probably laid by different non-hadrosauroid styracostern species but also, we found significant similitudes with the Late Cretaceous Maiasaura eggshells from North America. All Spheroolithidae eggshells are characterized by a profusion of low angle misorientation boundaries within larger orientation domains, that fan out from the eisospherite. A very quick reorientation of the c-axis of the crystals is observed, and explained partially via competitive growth.


This conservative eggshell architecture suggests that the physical properties of the eggshell of styracosterns remain unchanged for at least 80 million years, implying similar nesting and breeding behaviours.


EBSD Spheroolithidae Barremian Valanginian–Hauterivian Maestrazgo basin Cameros basin Dinosaur 



La ooespecie Guegoolitus turolensis de la oofamilia Spheroolithidae, atribuida putativamente a dinosaurios estiracosternos no hadrosauridos, fue descrita en el Barremiense de la Cuenca Ibérica, y posteriormente identificada en el Valanginiese-Hauteriviense de la Cuenca de Cameros, dos hallazgos separados por unos cientos de kilómetros, pero por más de diez millones de años.


En este trabajo utilizamos difracción de electrones dispersados para identificar posibles diferencias cristalográficas y ultraestructurales entre especímenes de estas dos localidades.


No solo no hemos encontrado diferencias significativas entre las cáscaras de ambas cáscaras, probablemente pertenecientes a huevos puestos por diferentes especies de estiracosternos no hadrosauridos; además hemos identificado similitudes importantes con cáscaras de huevo de Maiasaura, del Cretácico Tardío de Norteamérica. Todas las cáscaras de Spheroolithidae están caracterizadas por una abundancia de fronteras de desorientación de bajo ángulo, incluidas en dominios de orientación más grandes, que radian desde los eisosferitos. Hemos observado en todas las cáscaras una reorientación muy rápida de los ejes c, explicada parcialmente mediante crecimiento competitivo.


Esta arquitectura de la cáscara tan conservativa sugiere que las propiedades físicas de las cáscaras de estiracosternos permanecieron invariables durante al menos ochenta millones de años, implicando comportamientos de nidificación y crianza similares.

Palabras clave

EBSD Spheroolithidae Barremiense Valanginiense–Hauteriviense Cuenca del Maestrazgo Cuenca de Cameros Dinosaurio 



The Electron Microscopy Laboratory–EBSD-SEM of the Department of Earth, Ocean and Ecological Sciences of the University of Liverpool provided the EBSD datasets. This paper forms part of the Projects CGL2013-46169-C2-1-P and CGL2014-53548-P, subsidized by the Spanish Ministerio de Economía y Competitividad, the European Regional Development Fund, and the Government of Aragón (“Grupos Consolidados”). MMA is supported by the Fundação para a Ciência e a Tecnologia, Grant Number SFRH/BPD/113130/2015. The authors would like to acknowledge the use of the Servicio General de Apoyo a la Investigación-SAI, Universidad de Zaragoza. We are grateful to the reviewers Mariela S. Fernández and Albert G. -Sellés for their constructive comments and to the Editors of this special volume for his valuable advice.


  1. Canudo, J. I., Aurell, M., Gasca, J. M., Badiola, A., Blain, H., Cruzado-Caballero, P., et al. (2010). La Cantalera: an exceptional window onto the vertebrate biodiversity of the Hauterivian–Barremian transition in the Iberian Peninsula. Journal of Iberian Geology, 36(2), 205–224. doi: 10.5209/JIGE.33857.CrossRefGoogle Scholar
  2. Canudo, J. I., Gasca, J. M., Moreno-Azanza, M., & Aurell, M. (2012). New information about the stratigraphic position and age of the sauropod Aragosaurus ischiaticus from the Early Cretaceous of the Iberian Peninsula. Geological Magazine, 149(02), 252–263. doi: 10.1017/S0016756811000732.CrossRefGoogle Scholar
  3. Castanera, D., Díaz-Martínez, I., Moreno-Azanza, M., Canudo, J. I., & Gasca, J. M. (2016). An overview of the Lower Cretaceous dinosaur tracksites from the Mirambel Formation in the Iberian Range (NE Spain). In A. Khosl & S. G. Lucas (Eds.), Cretaceous period: biotic diversity and biogeography (Vol. 71, pp. 65–74). Albuquerque: New Mexico Museum of Natural History and Science.Google Scholar
  4. Castanera, D., Vila, B., Razzolini, N. L., Falkingham, P. L., Canudo, J. I., Manning, P. L., et al. (2013). Manus track preservation bias as a key factor for assessing trackmaker identity and quadrupedalism in basal ornithopods. PLoS One, 8(1), e54177. doi: 10.1371/journal.pone.0054177.CrossRefGoogle Scholar
  5. Chure, D., Turner, C., Peterson, F., Carpenter, K., Hirsch, K. F., & Horner, J. R. (1994). An embryo of Camptosaurus from the Morrison Formation (Jurassic, middle Tithonian) in Dinosaur National Monument, Utah. Dinosaur eggs and babies (pp. 298–310). Cambridge: Cambridge University Press.Google Scholar
  6. Cohen, K. M., Finney, S. C., Gibbard, P. L., & Fan, J.-X. (2013). The ICS international chronostratigraphic chart. Episodes, 36(3), 199–204.Google Scholar
  7. Coronado, I., Pérez-Huerta, A., & Rodríguez, S. (2013). Primary biogenic skeletal structures in Multithecopora (Tabulata, Pennsylvanian). Palaeogeography, Palaeoclimatology, Palaeoecology, 386, 286–299. doi: 10.1016/j.palaeo.2013.05.030.CrossRefGoogle Scholar
  8. Coronado, I., Pérez-Huerta, A., & Rodríguez, S. (2015). Crystallographic orientations of structural elements in skeletons of Syringoporicae (tabulate corals, Carboniferous): implications for biomineralization processes in Palaeozoic corals. Palaeontology, 58(1), 111–132. doi: 10.1111/pala.12127.CrossRefGoogle Scholar
  9. Cuenca-Bescós, G., Canudo, J. I., Gasca, J. M., Moreno-Azanza, M., & Cifelli, R. L. (2014). Spalacotheriid “symmetrodonts” from the Early Cretaceous of Spain. Journal of Vertebrate Paleontology, 34(6), 1427–1436. doi: 10.1080/02724634.2014.866574.CrossRefGoogle Scholar
  10. Cusack, M. (2016). Biomineral electron backscatter diffraction for palaeontology. Palaeontology, 59(2), 171–179. doi: 10.1111/pala.12222.CrossRefGoogle Scholar
  11. Dalbeck, P., & Cusack, M. (2006). Crystallography (electron backscatter diffraction) and chemistry (electron probe microanalysis) of the avian eggshell. Crystal Growth and Design, 6(11), 2558–2562. doi: 10.1021/cg068008t.CrossRefGoogle Scholar
  12. Deeming, D. C. (2006). Ultrastructural and functional morphology of eggshells supports the idea that dinosaur eggs were incubated buried in a substrate. Palaeontology, 49(1), 171–185. doi: 10.1111/j.1475-4983.2005.00536.x.CrossRefGoogle Scholar
  13. Dewaele, L., Tsogtbaatar, K., Barsbold, R., Garcia, G., Stein, K., Escuillié, F., et al. (2015). Perinatal specimens of Saurolophus angustirostris (Dinosauria: Hadrosauridae), from the Upper Cretaceous of Mongolia. PLoS One, 10(10), e0138806. doi: 10.1371/journal.pone.0138806.CrossRefGoogle Scholar
  14. Díaz-Martínez, I., Pereda-Suberbiola, X., Pérez-Lorente, F., & Canudo, J. I. (2015). Ichnotaxonomic review of large ornithopod dinosaur tracks: temporal and geographic implications. PLoS One, 10(2), e0115477. doi: 10.1371/journal.pone.0115477.CrossRefGoogle Scholar
  15. Eagle, R. A., Enriquez, M., Grellet-Tinner, G., Pérez-Huerta, A., Hu, D., Tütken, T., et al. (2015). Isotopic ordering in eggshells reflects body temperatures and suggests differing thermophysiology in two Cretaceous dinosaurs. Nature Communications, 6, 8296. doi: 10.1038/ncomms9296.CrossRefGoogle Scholar
  16. Erben, H. (1970). Ultrastructures and mineralization of recent and fossil avian and reptilian eggshells. Biomineralization, 1, 1–66.Google Scholar
  17. Erickson, G. M., Zelenitsky, D. K., Kay, D. I., & Norell, M. A. (2017). Dinosaur incubation periods directly determined from growth-line counts in embryonic teeth show reptilian-grade development. Proceedings of the National Academy of Sciences. doi: 10.1073/pnas.1613716114. (in press).Google Scholar
  18. Ezquerra, R., Doublet, S., Costeur, L., Galton, P. M., & Pérez-Lorente, F. (2007). Were non-avian theropod dinosaurs able to swim? Supportive evidence from an Early Cretaceous trackway, Cameros Basin (La Rioja, Spain). Geology, 35(6), 507–510. doi: 10.1130/G23452A.1.CrossRefGoogle Scholar
  19. Garía-Ruiz, J. M., & Rodriguez-Navarro, S. (1994). Competitive crystal growth: the avian eggshell model. In D. Allemand & J. P. Cuif (Eds.), Biomineralization 93: 7th International Symposium on Biomineralization, Monaco, pp. 85–94.Google Scholar
  20. Gasca, J. M., Moreno-Azanza, M., Bádenas, B., Díaz-Martínez, I., Castanera, D., Canudo, J. I., et al. (2017). Integrated overview of the vertebrate fossil record of the Ladruñán anticline (Spain): evidence of a Barremian alluvial-lacustrine system in NE Iberia frequented by dinosaurs. Palaeogeography, Palaeoclimatology, Palaeoecology, 472, 192–202. doi: 10.1016/j.palaeo.2017.01.050.CrossRefGoogle Scholar
  21. Gasca, J. M., Ramón del Río, D., Moreno-Azanza, M., & Canudo, J. I. (2015). Fósiles aislados de dinosaurios ornitópodos (Iguanodontia) de la Fromación Mirambel (Cretácico Inferior, Teruel, España). Geogaceta, 57, 63–66.Google Scholar
  22. Grellet-Tinner, G., Sim, C. M., Kim, D. H., Trimby, P., Higa, A., An, S. L., et al. (2011). Description of the first lithostrotian titanosaur embryo in ovo with Neutron characterization and implications for lithostrotian Aptian migration and dispersion. Gondwana Research, 20(2–3), 621–629. doi: 10.1016/ Scholar
  23. Horner, J. R. (1999). Egg clutches and embryos of two hadrosaurian dinosaurs. Journal of Vertebrate Paleontology, 19(4), 607–611. doi: 10.1080/02724634.1999.10011174.CrossRefGoogle Scholar
  24. Horner, J. R., & Makela, R. (1979). Nest of juveniles provides evidence of family structure among dinosaurs. Nature, 282(5736), 296–298. doi: 10.1038/282296a0.CrossRefGoogle Scholar
  25. Horner, J. R., Padian, K., & de Ricqlès, A. (2001). Comparative osteohistology of some embryonic and perinatal archosaurs: developmental and behavioral implications for dinosaurs. Paleobiology, 27(1), 39–58. doi: 10.1666/0094-8373(2001)027<0039:COOSEA>2.0.CO;2.CrossRefGoogle Scholar
  26. Jain, S., Bajpai, S., Kumar, G., & Pruthi, V. (2016). Microstructure, crystallography and diagenetic alteration in fossil ostrich eggshells from Upper Palaeolithic sites of Indian peninsular region. Micron, 84, 72–78. doi: 10.1016/j.micron.2016.02.012.CrossRefGoogle Scholar
  27. Lee, M. R., Torney, C., & Owen, A. W. (2007). Magnesium-rich intralensar structures in schizochroal trilobite eyes. Palaeontology, 50(5), 1031–1037. doi: 10.1111/j.1475-4983.2007.00710.x.CrossRefGoogle Scholar
  28. Mas Mayoral, J. R., Alonso, A., Guimera, J. Mas, Mayoral, J. R., Alonso, A., & Guimera, J. (1993). Evolución tectonosedimentaria de una cuenca extensional intraplaca: La cuenca finijurásica-eocretácica de Los Cameros (La Rioja-Soria). Revista de la Sociedad Geológica de España, 6, 129–144.Google Scholar
  29. Moreno-Azanza, M., Bauluz, B., Canudo, J. I., Gasca, J. M., & Fernández-Baldor, F. T. (2016a). Combined use of electron and light microscopy techniques reveals false secondary shell units in Megaloolithidae eggshells. PLoS One, 11(5), e0153026. doi: 10.1371/journal.pone.0153026.CrossRefGoogle Scholar
  30. Moreno-Azanza, M., Canudo, J. I., & Gasca, J. M. (2014). Spheroolithid eggshells in the Lower Cretaceous of Europe. Implications for eggshell evolution in ornithischian dinosaurs. Cretaceous Research, 51, 75–87. doi: 10.1016/j.cretres.2014.05.017.CrossRefGoogle Scholar
  31. Moreno-Azanza, M., Gasca, J. M., Díaz-Martínez, I., Bauluz, B., Canudo, J. I., Fernádez, A., et al. (2016b). A multi-ootaxic assemblage from the Lower Cretaceous of the Cameros Basin (La Rioja; northern Spain). Spanish Journal of Palaeontology, 31(2), 1.Google Scholar
  32. Moreno-Azanza, M., Mariani, E., Bauluz, B., & Canudo, J. I. (2013). Growth mechanisms in dinosaur eggshells: an insight from electron backscatter diffraction. Journal of Vertebrate Paleontology, 33(1), 121–130. doi: 10.1080/02724634.2012.710284.CrossRefGoogle Scholar
  33. Pérez-Lorente, F. (2002). La distribución de yacimientos y de tipos de huellas de dinosaurio en la Cuenca de Cameros (La Rioja, Burgos, Soria, España). Zubía, 14, 191–210.Google Scholar
  34. Prior, D. J., Boyle, A. P., Brenker, F., Cheadle, M. C., Day, A., Lopez, G., et al. (1999). The application of electron backscatter diffraction and orientation contrast imaging in the SEM to textural problems in rocks. American Mineralogist, 84(11–12), 1741–1759. doi: 10.2138/am-1999-11-1204.CrossRefGoogle Scholar
  35. Rodríguez-Navarro, A. B., Marie, P., Nys, Y., Hincke, M. T., & Gautron, J. (2015). Amorphous calcium carbonate controls avian eggshell mineralization: A new paradigm for understanding rapid eggshell calcification. Journal of Structural Biology, 190(3), 291–303. doi: 10.1016/j.jsb.2015.04.014.CrossRefGoogle Scholar
  36. Ruiz-Omeñaca, J. I., Canudo, J. I., Aurell, M., Bádenas, B., Barco, J. L., Cuenca-Bescós, G., et al. (2004). Estado de las investigaciones sobre los Vertebrados del Jurásico Superior y Cretácico Inferior de Galve (Teruel). Estudios Geológicos. doi: 10.3989/egeol.04603-694.Google Scholar
  37. Sakamoto, M., Benton, M. J., & Venditti, C. (2016). Dinosaurs in decline tens of millions of years before their final extinction. Proceedings of the National Academy of Sciences, 113(18), 5036–5040. doi: 10.1073/pnas.1521478113.CrossRefGoogle Scholar
  38. Salas, R., Guimerà, J., Mas, R., Martín-Closas, C., Meléndez, A., & Alonso, A. (2001). Evolution of the Mesozoic Central Iberian rift system and its Cainozoic inversion (Iberian chain). Mémoires Du Muséum Nationale de l’Histoire Naturelle, Peri-Tethys Memoir, 6, 145–186.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Geobiotec, Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, FCTUniversidade Nova de LisboaCaparicaPortugal
  2. 2.Grupo Aragosaurus-IUCA, Área de PaleontologíaUniversidad de ZaragozaSaragossaSpain
  3. 3.Mineralogía y Cristalografía, Facultad de CienciasUniversidad de ZaragozaSaragossaSpain
  4. 4.Museu da LourinhãLourinhãPortugal

Personalised recommendations