Skip to main content
Log in

Convergence in \(\varphi \)-variation for Mellin-type nonlinear integral operators

  • Original Research Paper
  • Published:
The Journal of Analysis Aims and scope Submit manuscript

Abstract

In the present paper, we examine Mellin-type nonlinear integral operators equipped with the Haar measure. Using \(\varphi \)-absolutely continuous functions, we obtain some approximations via summability process. Order of convergence is also observed. In addition, we have a general characterization theorem for \(\varphi \)-absolutely continuous functions. Finally, we give an application of our study with some illustrations and numerical computations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

No data is used in the article.

References

  1. Angeloni, L. 2013. Approximation results with Respect to multidimensional \(\varphi \)-variation for nonlinear integral operators. Zeitschrift fur Analysis und ihre Anwendungen 32 (1): 103–128.

    Article  MathSciNet  Google Scholar 

  2. Angeloni, L., and G. Vinti. 2007. Approximation by means of nonlinear integral operators in the space of functions with bounded \(\varphi \)-variation. Differential and Integral Equations 20: 339–360.

    Article  MathSciNet  Google Scholar 

  3. Angeloni, L., and G. Vinti. 2010. Errata corrige to: Approximation by means of nonlinear integral operators in the space of functions with bounded \(\varphi \)-variation. Differential and Integral Equations 23: 795–799.

    Article  MathSciNet  Google Scholar 

  4. Angeloni, L., and G. Vinti. 2014. Convergence and rate of approximation in \(BV_{\varphi }\left( {\mathbb{R} }_{N}^{+}\right) \) for class of Mellin integral operators. Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematische e Naturali, Rendiconti Lincei Matematica e Applicazioni 25 (3): 217–232.

    Article  Google Scholar 

  5. Angeloni, L., and G. Vinti. 2015. Convergence in variation and a characterization of absolute continuity. Integral Transforms and Special Functions 26 (10): 829–844.

    Article  MathSciNet  Google Scholar 

  6. Angeloni, L., and G. Vinti. 2016. A concept of absolute continuity and its characterization in terms of convergence in variation. Mathematische Nachrichten 289 (16): 1986–1994.

    Article  MathSciNet  Google Scholar 

  7. Aslan, İ. 2022. Multivariate approximation in \(\varphi \)-variation for nonlinear integral operators via summability methods. Turkish Journal of Mathematics 46 (1): 277–298.

    MathSciNet  Google Scholar 

  8. Aslan, I. 2021. Convergence in phi-variation and rate of approximation for nonlinear integral operators using summability process. Mediterranean Journal of Mathematic 18 (1): 5.

    Article  MathSciNet  Google Scholar 

  9. Aslan, I., and O. Duman. 2020. Approximation by nonlinear integral operators via summability process. Mathematische Nachrichten 293 (3): 430–448.

    Article  MathSciNet  Google Scholar 

  10. Aslan, I., and O. Duman. 2020. Characterization of absolute and uniform continuity. Hacettepe Journal of Mathematics and Statistics 49 (5): 1550–1565.

    Article  MathSciNet  Google Scholar 

  11. Aslan, I., and O. Duman. 2019. Summability on Mellin-type nonlinear integral operators. Integral Transforms and Special Functions 30 (6): 492–511.

    Article  MathSciNet  Google Scholar 

  12. Bardaro, C., J. Musielak, and G. Vinti. 2003. Nonlinear Integral Operators and Applications, De Gruyter Series in Nonlinear Analysis and Applications, vol. 9. Berlin: New York.

    Google Scholar 

  13. Bardaro, C., S. Sciamannini, and G. Vinti. 2001. Convergence in BV\(_{\varphi }\) by nonlinear Mellin-type convolution operators. Functiones et Approximatio Commentarii Mathematici 29: 17–28.

    Article  MathSciNet  Google Scholar 

  14. Bardaro, C., H. Karslı, and G. Vinti. 2013. On pointwise convergence of Mellin type nonlinear m-singular integral operators. Communications on Applied Nonlinear Analysis 20 (2): 25–39.

    MathSciNet  Google Scholar 

  15. Bardaro, C., and G. Vinti. 1991. On convergence of moment operators with respect to \(\phi \)-variation. Applicable Analysis 41: 247–256.

    Article  MathSciNet  Google Scholar 

  16. Bell, H. T., \({\cal{A}}\)-summability, Dissertation, (Lehigh University, Bethlehem, Pa., 1971).

  17. Bell, H.T. 1973. Order summability and almost convergence. Proceedings of the American Mathematical Society 38: 548–552.

    Article  MathSciNet  Google Scholar 

  18. Bertero, M., and E.R. Pike. 1991. Exponential-sampling method for Laplace and other dilationally invariant transforms: I. Singular-system analysis. II. Examples in photon correlation spectroscopy and Fraunhofer diffraction, Inverse Probl. 7 (1–20): 21–41.

    Google Scholar 

  19. Butzer, P.L., and S. Jansche. 1997. A direct approach to the Mellin transform. Journal of Fourier analysis and applications 3: 325–376.

    Article  MathSciNet  Google Scholar 

  20. Butzer, P.L., and S. Jansche, 1998. The Exponential Sampling Theorem of Signal Analysis, Atti Sem. Mat. Fis. Univ. Modena, Suppl., a special issue of the International Conference in Honour of Prof. Calogero Vinti, 46:99–122.

  21. Casasent, D. 1978. Optical Data Processing, 241–282. Berlin: Springer.

    Google Scholar 

  22. Gori, F. 1993. Sampling in optics. In Advanced topics in Shannon Sampling and Interpolation Theory, ed. R.J. Marks II., 37–83. New York, NY: Springer.

    Chapter  Google Scholar 

  23. İlarslan, H. G. İ, and G. Başcanbaz-Tunca. 2016. Convergence in variation for Bernstein-type operators. Mediterranean Journal of Mathematics 13 (5): 2577–2592.

    Article  MathSciNet  Google Scholar 

  24. Jordan, C. 1881. Sur la serie de Fourier. Comptes Rendus de l’Academie 92: 228–230.

    Google Scholar 

  25. Hardy, G.H. 1949. Divergent series. London: Oxford Univ. Press.

    Google Scholar 

  26. Karsli, H., and Ö. Öksüzer-Yılık. 2017. Convergence of the Bernstein-Durrmeyer Operators in Variation Seminorm. Results in Mathematics 72: 1257–1270.

    Article  MathSciNet  Google Scholar 

  27. Lorentz, G.G. 1948. A contribution to the theory of divergent sequences. Acta mathematica 80: 167–190.

    Article  MathSciNet  Google Scholar 

  28. Love, E.R., and L.C. Young. 1937. Sur une classe de fonctionnelles linéaires. Fundamenta Mathematicae 28: 43–257.

    Article  Google Scholar 

  29. Mamedov, R.G. 1991. The Mellin transform and approximation theory, "Elm", Baku, (in Russian).

  30. Musielak, J., and W. Orlicz. 1959. On generalized variations (I). Studia Mathematica 18: 11–41.

    Article  MathSciNet  Google Scholar 

  31. Musielak, J. 1983. Orlicz Spaces and Modular Spaces, Springer-Verlag, Lecture Notes in Math., 1034.

  32. Ostrowsky, N., D. Sornette, P. Parker, and E.R. Pike. 1994. Exponential sampling method for light scattering polydispersity analysis. Optica Acta 28: 1059–1070.

    Article  Google Scholar 

  33. Taş, E., and T. Yurdakadim. 2019. Variational approximation for modified Meyer-König and Zeller Operators. Sarajevo journal of mathematics 15 (28): 113–127.

    MathSciNet  Google Scholar 

  34. Tonelli, L. 1942. Su alcuni concetti dell’analisimoderna. Annali della Scuola Normale Superiore di Pisa-Scienze Fisiche e Matematiche 11 (2): 107–118.

    MathSciNet  Google Scholar 

  35. Wiener, N. 1924. The quadratic variation of a function and its Fourier coefficients. Journal of Mathematics and Physics 3: 72–94.

    Article  Google Scholar 

  36. Young, L.C. 1936. An inequality of the Hölder type, connected with Stieltjes integration. Acta Mathematica 67: 251–282.

    Article  MathSciNet  Google Scholar 

  37. Young, L.C. 1937. Sur une generalisation de la notion de variation de puissance pieme bornee ausens de M. Wiener, et sur la convergence des series de Fourier. Comptes Rendus des Sciences 204: 470–472.

    Google Scholar 

Download references

Acknowledgements

This study is supported by the Scientific and Technological Research Council of Turkey, Grant No: 119F262.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İsmail Aslan.

Additional information

Communicated by S Ponnusamy.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aslan, İ. Convergence in \(\varphi \)-variation for Mellin-type nonlinear integral operators. J Anal (2024). https://doi.org/10.1007/s41478-024-00760-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41478-024-00760-1

Keywords

Mathematics Subject Classification

Navigation