Skip to main content
Log in

Geometric properties of functions containing derivatives of Bessel function

  • Original Research Paper
  • Published:
The Journal of Analysis Aims and scope Submit manuscript

Abstract

Let \(J_\xi (z)\) denotes the Bessel function of the first kind of order \(\xi .\) For three different kinds of normalizations of \(N_\xi (z)=az^2J_\xi ^{\prime \prime }(z)+bzJ_\xi ^{\prime }(z)+cJ_\xi (z)\), we find the radius for Ma–Minda classes: \(\mathcal {S}^*\left( \varphi \right)\)-radii and \(\mathcal {C}\left( \varphi \right)\)-radii. We further establish the radii of \(\gamma\)-spirallike of order \(\alpha\) and convex \(\gamma\)-spirallike of order \(\alpha\) of these normalized functions. As an application of our results, we derive sufficient conditions for the \(N_\xi (z)\) to be a member of the unified subclasses of starlike and convex functions. The obtained radii are sharp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aktaş, I., Á. Baricz, and H. Orhan. 2018. Bounds for radii of starlikeness and convexity of some special functions. Turkish Journal of Mathematics 42(1): 211–226.

    Article  MathSciNet  Google Scholar 

  2. Baricz, Á., D.K. Dimitrov, H. Orhan, and N. Yağmur. 2016. Radii of starlikeness of some special functions. Proceedings of the American Mathematical Society 144(8): 3355–3367.

    Article  MathSciNet  Google Scholar 

  3. Baricz, Á., P.A. Kupán, and R. Szász. 2014. The radius of starlikeness of normalized Bessel functions of the first kind. Proceedings of the American Mathematical Society 142(6): 2019–2025.

    Article  MathSciNet  Google Scholar 

  4. Baricz, Á., and R. Szász. 2014. The radius of convexity of normalized Bessel functions of the first kind. Analysis and Applications (Singapore) 12(5): 485–509.

    Article  MathSciNet  Google Scholar 

  5. Baricz, Á., and R. Szász. 2015. The radius of convexity of normalized Bessel functions. Analysis and Applications 41(3): 141–151.

    MathSciNet  Google Scholar 

  6. Baricz, Á., M. Çağlar, and E. Deniz. 2016. Starlikeness of Bessel functions and their derivatives. Mathematical Inequalities & Applications 19(2): 439–449.

    Article  MathSciNet  Google Scholar 

  7. Baricz, Á., H. Orhan, and R. Szász. 2016. The radius of \(\alpha\)-convexity of normalized Bessel functions of the first kind. Computational Methods and Function Theory 16(1): 93–103.

    Article  MathSciNet  Google Scholar 

  8. Baricz, Á., and A. Prajapati. 2020. Radii of starlikeness and convexity of generalized Mittag–Leffler functions. Mathematical Communications 25(1): 117–135.

    MathSciNet  Google Scholar 

  9. Baricz, Á., E. Toklu, and E. Kadioğlu. 2018. Radii of starlikeness and convexity of Wright functions. Mathematical Communications 23(1): 97–117.

    MathSciNet  Google Scholar 

  10. Baricz, Á., and N. Yağmur. 2017. Geometric properties of some Lommel and Struve functions. Ramanujan Journal 42(2): 325–346.

    Article  MathSciNet  Google Scholar 

  11. Brown, R.K. 1960. Univalence of Bessel functions. Proceedings of the American Mathematical Society 11: 278–283.

    Article  MathSciNet  Google Scholar 

  12. Çağlar, M., E. Deniz, and R. Szász. 2017. Radii of \(\alpha\)-convexity of some normalized Bessel functions of the first kind. Results in Mathematics 72(4): 2023–2035.

    Article  MathSciNet  Google Scholar 

  13. Deniz, E., and R. Szász. 2017. The radius of uniform convexity of Bessel functions. Journal of Mathematical Analysis and Applications 453(1): 572–588.

    Article  MathSciNet  Google Scholar 

  14. Deniz, E., S. Kazımoğlu, and M. Çağlar. 2022. Radii of starlikeness and convexity of the derivatives of Bessel function. Ukrainian Mathematical Journal 73(11): 1686–1711.

    Article  MathSciNet  Google Scholar 

  15. Deniz, E. 2021. Geometric and monotonic properties of Ramanujan type entire functions. The Ramanujan Journal 55(1): 103–130.

    Article  MathSciNet  Google Scholar 

  16. Gangania, K., and S.S. Kumar. 2022. \(\cal{S} ^*(\phi )\) and \(\cal{C} (\phi )\)-radii for some special functions. Iranian Journal of Science and Technology, Transaction A Science 46(3): 955–966.

    Article  MathSciNet  Google Scholar 

  17. Gangania, K., and S.S. Kumar. 2024. Ceratin Radii problems for \({\cal{S}}^{*}(\psi )\) and Special functions. Mathematica Slovaca 74(1): 1–22. arXiv:2007.07816v2.

  18. Ismail, M.E.H., and M.E. Muldoon. 1995. Bounds for the small real and purely imaginary zeros of Bessel and related functions. Methods and Applications of Analysis 2(1): 1–21.

    Article  MathSciNet  Google Scholar 

  19. Kazımoğlu, S., and E. Deniz. 2023. Radius problems for functions containing derivatives of Bessel functions. Computational Methods and Function Theory 23: 421–446.

    Article  MathSciNet  Google Scholar 

  20. Kreyszig, E., and J. Todd. 1960. The radius of univalence of Bessel functions, I. Illinois Journal of Mathematics 4: 143–149.

    Article  MathSciNet  Google Scholar 

  21. Levin, B.Y. 1996. Lectures on entire functions, translated from the Russian manuscript by Tkachenko, Translations of Mathematical Monographs, 150. Providence: American Mathematical Society.

    Google Scholar 

  22. Madaan, V., A. Kumar, and V. Ravichandran. 2020. Radii of starlikeness and convexity of some entire functions. Bulletin of the Malaysian Mathematical Sciences Society 43(6): 4335–4359.

    Article  MathSciNet  Google Scholar 

  23. Ma, W. C., and D. Minda. 1992. A unified treatment of some special classes of univalent functions. In Proceedings of the Conference on Complex Analysis, Tianjin, Conference Proceedings Lecture Notes Anal, I, 157–169. Int Press. Cambridge.

  24. McD, A. 1992. Mercer, The zeros of \(az^2J^{\prime \prime }_\nu (z)+bzJ^{\prime }_\nu (z)+cJ_\nu (z)\) as functions of order. International Journal of Mathematics and Mathematical Sciences 15(2): 319–322.

    MathSciNet  Google Scholar 

  25. Olver, F.W.J., D.W. Lozier, R.F. Boisvert, and C.W. Clark, eds. 2010. NIST Handbook of Mathematical Functions. Cambridge: Cambridge University Press.

    Google Scholar 

  26. Pfaltzgraff, J.A. 1975. Univalence of the integral of \(f^{\prime } (z)^{\lambda }\). Bulletin of the London Mathematical Society 7(3): 254–256.

    Article  MathSciNet  Google Scholar 

  27. Robertson, M.S. 1969. Univalent functions \(f(z)\) for which \(zf^{\prime } (z)\) is spirallike. Michigan Mathematical Journal 16: 97–101.

    Article  MathSciNet  Google Scholar 

  28. Shah, S.M., and S.Y. Trimble. 1971. Entire functions with univalent derivatives. Journal of Mathematical Analysis and Applications 33: 220–229.

    Article  MathSciNet  Google Scholar 

  29. Spacek, L. 1933. Contribution á la thèorie des fonctions univalentes. Casopis Pro Pestování Matematiky a Fysiky 62: 12–19.

    Article  Google Scholar 

  30. Szász, R. 2015. About the radius of starlikeness of Bessel functions of the first kind. Monatshefte für Mathematik 176(2): 323–330.

    Article  MathSciNet  Google Scholar 

  31. Zayed, H.M., and T. Bulboacă. 2022. Normalized generalized Bessel function and its geometric properties. Journal of Inequalities and Applications 2022: 158.

    Article  MathSciNet  Google Scholar 

  32. Zayed, H.M., and K. Mehrez. 2022. Generalized Lommel–Wright function and its geometric properties. Journal of Inequalities and Applications 2022: 115.

    Article  MathSciNet  Google Scholar 

  33. Watson, G.N. 1944. A treatise on the theory of Bessel functions. Cambridge: Cambridge University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally.

Corresponding author

Correspondence to Kamaljeet Gangania.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Arpad Baricz.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gangania, K., Kazımoğlu, S. Geometric properties of functions containing derivatives of Bessel function. J Anal (2024). https://doi.org/10.1007/s41478-024-00737-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41478-024-00737-0

Keywords

Mathematics Subject Classification

Navigation