Skip to main content
Log in

On enriched Hardy–Rogers contractions in Banach space via Krasnoselskij iteration with an application

  • Original Research Paper
  • Published:
The Journal of Analysis Aims and scope Submit manuscript

Abstract

In this paper we initiate the study of enriched Hardy–Rogers contraction in Banach space and utilize it to establish fixed point results by using the Krasnoselskij iteration scheme. Further, we provide illustrative examples to justify the obtained conclusions and demonstrate the remarkable fact that our novel enriched contractions need not be continuous. Lastly, we introduce the notion of enriched generalized Hardy–Rogers contraction and elaborate its application in finding local fixed points by using the significant fact that the iteration scheme doesn’t dislocate the centre of the open ball too far.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

This clause is not applicable to this paper.

References

  1. Banach, S. 1922. Sur les Operations dans les Ensembles Abstraits et Leur Applications aux Equations Integrals. Fundamenta Mathematicae 3: 133–181.

    Article  MathSciNet  Google Scholar 

  2. Hardy, G.E., and T.D. Rogers. 1973. A generalization of a fixed point theorem of Reich. Canadian Mathematical Bulletin 16: 201–206.

    Article  MathSciNet  Google Scholar 

  3. Wangwe, L., and S. Kumar. 2022. Fixed point Results for Interpolative \(\psi\)-Hardy–Rogers type contraction mappings in quasi-partial \(b\)-metric space with some applications. Journal of Analysis 31: 6–7. https://doi.org/10.1007/s41478-022-00456-4.

    Article  Google Scholar 

  4. Pauline, S., and S. Kumar. 2021. Common Fixed point theorems for T-Hardy–Rodgers contraction mappings in complete cone b-metric spaces with an application. Topological Algebra and its Applications 9: 105–117.

    Article  MathSciNet  Google Scholar 

  5. Berinde, V. 2019. Approximating fixed points of enriched nonexpansive mappings by Krasnoselskij iteration in Hilbert spaces. Carpathian Journal of Mathematics 35 (3): 293–304.

    Article  MathSciNet  Google Scholar 

  6. Krasnoselskij, M.A. 1955. Two remarks about the method of successive approximations. Uspekhi Matematicheskikh Nauk 19: 123–127.

    Google Scholar 

  7. Borwein, J., S. Reich, and I. Shafrir. 1992. Krasnoselski–Mann iterations in normed spaces. Canadian Journal of Mathematics 35: 21–28.

    MathSciNet  Google Scholar 

  8. Ćirić, L.B. 1971. Generalized contractions and fixed-point theorems. Publications de l’Institut Mathématique 12 (26): 19–26.

    MathSciNet  Google Scholar 

  9. Reich, S. 1971. Some remarks concerning contraction mappings. Canadian Mathematical Bulletin 14: 121–124.

    Article  ADS  MathSciNet  Google Scholar 

  10. Rus, I.A. 1972. Some fixed point theorems in metric spaces. Rendiconti dell’Istituto di Matematica dell’Università di Trieste 3 (1971): 169–172.

    MathSciNet  Google Scholar 

  11. Subrahmanyam, P.V. 1974. Remarks on some fixed point theorems related to Banach’s contraction principle. Journal of Mathematical Physics 8: 445–457.

    MathSciNet  Google Scholar 

  12. Kannan, R. 1968. Some results on fixed points. Bulletin of the Calcutta Mathematical Society 60: 71–76.

    MathSciNet  Google Scholar 

  13. Reich, S. 1971. Kannan’s fixed point theorem. Bollettino dell’Unione Matematica Italiana 4: 1–11.

    MathSciNet  Google Scholar 

  14. Berinde, V., and M. Pãcurar. 2021. Fixed point theorems for enriched Ćirić–Reich–Rus contractions in Banach spaces and convex metric spaces. Carpathian Journal of Mathematics 37 (2): 173–184.

    Article  MathSciNet  Google Scholar 

  15. Berinde, V., and M. Pãcurar. 2020. Approximating fixed points of enriched contractions in Banach spaces. Journal of Fixed Point Theory and Applications 22 (2): 10 (Paper 38).

    Article  MathSciNet  Google Scholar 

  16. Berinde, V., and Pãcurar, M. 2019. Fixed point theorems for Kannan type mappings with applications to split feasibility and variational inequality problems. arXiv Functional Analysis.

  17. Kesahorm, T., and W. Sintunavarat. 2020. On novel common fixed point results for enriched nonexpansive semigroups. Thai Journal of Mathematics 18 (3): 1549–1563.

    MathSciNet  Google Scholar 

  18. Debnath, P., Z.D. Mitrovic, and S. Radenović. 2020. Interpolative Hardy-Rogers and Reich–Rus–Ćirić type contractions in b-metric spaces and rectangular b-metric spaces. Matematčki Vesnik 72 (4): 368–374.

    Google Scholar 

  19. Baillon, J.B., R.E. Bruck, and S. Reich. 1978. On the asymptotic behavior of nonexpansive mappings and semigroups in Banach spaces. Houston Journal of Mathematics 4: 1–9.

    MathSciNet  Google Scholar 

  20. Ullah, K., J. Ahmad, and M. de La Sen. 2020. On generalized nonexpansive maps in Banach spaces. Computation. https://doi.org/10.3390/computation8030061.

    Article  Google Scholar 

  21. Ullah, K., J. Ahmad, and M. de La Sen. 2020. Some new results on a three-step iteration process. Axioms 9 (3): 110. https://doi.org/10.3390/axioms9030110.

    Article  Google Scholar 

  22. Ullah, K., and J. Ahmad. 2021. Iterative approximations of fixed points for operators satisfying (\(B_{\gamma , \mu }\) ) condition. Fixed Point Theory 22: 887–898. https://doi.org/10.24193/fpt-ro.2021.2.58.

    Article  MathSciNet  Google Scholar 

  23. Gautam, P., L.M. Sanchez Ruiz, and S. Verma. 2021. Fixed point of interpolative Rus–Reich–Ciric contraction mapping on rectangular quasi-partial b-metric space. Symmetry-Basel 13 (1): 32.

    Article  ADS  Google Scholar 

  24. Gautam, P., V.N. Mishra, S. Verma, and R. Parija. 2021. w-Interpolative Hardy–Rogers type contractions on quasi-partial b-metric space. Fixed point theory and its applications to real world problems. Hauppauge: Nova Science Publishers.

    Google Scholar 

  25. Debnath, P., and M. de La Sen. 2019. Set-valued interpolative Hardy–Rogers and set-valued Ćirić–Reich–Rus type contractions in b-metric spaces. Mathematics 7: 132.

    Article  Google Scholar 

  26. Mishra, V.N., L.M. Sánchez Ruiz, P. Gautam, and S. Verma. 2020. Interpolative Ćirić–Reich–Rus and Hardy–Rogers contraction on quasi-partial b-metric space and related fixed point results. Mathematics 8: 1598.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the learned reviewer for his valuable comments.

Funding

Authors declare that there is no funding available for this article.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally and significantly in writing this article. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Santosh Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Communicated by S Ponnusamy.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gautam, P., Kumar, S., Verma, S. et al. On enriched Hardy–Rogers contractions in Banach space via Krasnoselskij iteration with an application. J Anal 32, 1145–1160 (2024). https://doi.org/10.1007/s41478-023-00680-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41478-023-00680-6

Keywords

Mathematics Subject Classification

Navigation