Skip to main content
Log in

On a class of Drazin invertible operators for which \(\left( S^{*}\right) ^{2}\left( S^{D}\right) ^{2}=\left( S^{*}S^{D}\right) ^{2}\)

  • Original Research Paper
  • Published:
The Journal of Analysis Aims and scope Submit manuscript

Abstract

In this paper we introduce and analyze a new class of operators for which \( \big ( S^{*}\big ) ^{2}\big ( S^{D}\big )^{2}=\big ( S^{*}S^{D}\big )^{2}\) for a bounded linear operator S acting on a complex Hilbert space \(\mathcal {H}\) using the Drazin inverse \(S^D\) of S. After establishing the basic properties of such operators. We show some results related to this class on a Hilbert space. In addition, we characterize the direct sum and the tensor product of these operators. At the end of this paper we generalize the Kaplansky theorem’s to this class.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

No data was used for the research described in the article.

References

  1. Aiena, P., and S. Triolo. 2016. Local spectral theory for Drazin invertible operators. J. Math. Anal. Appl. 435: 414–424.

    Article  MathSciNet  Google Scholar 

  2. Aiena, P., and S. Triolo. 2016. Fredholm spectra and Weyl type theorems for Drazin invertible operators. Mediterr. J. Math. 13: 4385–4400.

    Article  MathSciNet  Google Scholar 

  3. Aiena, P., and S. Triolo. 2018. Weyl-type theorems on Banach spaces under compact perturbations. Mediterr. J. Math. 15: 126.

    Article  MathSciNet  Google Scholar 

  4. Benali, A., and M.H. Mortad. 2014. Generalizations of Kaplansky’s theorem involving unbounded linear operators. Bull. Pol. Acad. Sci. Math. 62 (2): 181–186.

    Article  MathSciNet  Google Scholar 

  5. Ben-Israel, A., and T.N.E. Greville. 2003. Generalized inverses: theory and applications, 2nd ed. New York: Springer.

    Google Scholar 

  6. Campbell, S.L., and C.D. Meyer. 1991. Generalized inverse of linear transformations, Pitman, London (1979). New York: Dover.

    Google Scholar 

  7. Campbell, S.L., and C.D. Meyer. 1991. Generalized inverses of linear transformations. New York: Dover (originally published: Pitman, London, 1979).

    Google Scholar 

  8. Caradus, S.R. 2004. Operator theory of the generalized inverse. New York: Science Press.

    Google Scholar 

  9. Conway, J.B. 1990. A course in functional analysis, 2nd ed. New York: Springer.

    Google Scholar 

  10. Dana, M. Yousefi, R. 2020. Generalizations of some classical theorems to D-normal operators on Hilbert spaces. J. Inequal. Appl.https://doi.org/10.1186/s13660-020-02367-z.

    Article  MathSciNet  Google Scholar 

  11. Dana, M. 2018. On the classes of \(D\) -normal operators and \(D\)-quasi-normal operators on Hilbert space. Oper. Matrices 12 (2): 465–487.

    Article  MathSciNet  Google Scholar 

  12. Dana, M., and R. Yousefi. 2019. Some results on the classes of \(D\)-normal operators and \(n\)-power \(D\)-normal operators. Results Math. 74: 1.

    Article  MathSciNet  Google Scholar 

  13. Dana, M., and R. Yousefi. 2019. On a new class of generalized normal operators. Complex Anal. Oper. Theory. https://doi.org/10.1007/s11785-019-00916-z.

    Article  MathSciNet  Google Scholar 

  14. Hong-Ke, D., and D. Chun-Yuan. 2005. The representation and characterization of Drazin inverses of operators on a Hilbert space. Linear Algebra Appl. 407: 117–124.

    Article  MathSciNet  Google Scholar 

  15. Hoxha, I., and N.L. Braha. 2013. A note on \(k\)-quasi-\( \ast \)-paranormal operators. J. Inequal. Appl. 2013: 350.

    Article  MathSciNet  Google Scholar 

  16. Jabalonski, Z.J., I.B. Jung, and J. Stochel. 2014. Unbounded quasinormal operators revisited. Integr. Equ. Oper. Theory 79 (1): 135–149.

    Article  MathSciNet  Google Scholar 

  17. Jibril, A.A.S. 2010. On Operators for which \(T^{\ast 2}T^{2}=\left( T^{\ast }T\right) ^{2}\). Int. Math. Forum 46: 2255–2262.

    Google Scholar 

  18. Jibril, A.A.S. 2008. On \(n\)-power normal operators. Arab. J. Sci. Eng. 33 (2A): 247–251.

    MathSciNet  Google Scholar 

  19. Kaplansky, I. 1953. Products of normal operators. Duke Math. J. 20 (2): 257–260.

    Article  MathSciNet  Google Scholar 

  20. Laursen, K.B., and M.M. Neumann. 2000. An introduction to local spectral theory. Oxford University Press.

    Book  Google Scholar 

  21. Mary, S.I., and P. Vijaylakshmi. 2015. Fuglede-Putnam theorem and quasi-nilpotent part of n-normal operators. Tamkang J. Math. 46 (2): 151–165.

    Article  MathSciNet  Google Scholar 

  22. Mortad, M.H. 2022. Counterexamples in operator theory. Cham: Birkä user/Springer.

    Book  Google Scholar 

  23. Putinar, M. 1992. Quasisimilarity of tuples with Bishop’s property \(\left( \beta \right) \). Integr. Equ. Oper. Theory 15: 1047–1052.

    Article  Google Scholar 

  24. Rakoc̆evtć. V. 1999. Continuity of Drazin inverse. J. Oper. Theory 41: 55–68.

    MathSciNet  Google Scholar 

  25. Rosenblum, M.A. 1956. On the operator equation \(BX-XA=Q\). Duke Math. J. 23: 263–269.

    Article  MathSciNet  Google Scholar 

  26. Sid Ahmed, O.A.M., and O.B. Sid Ahmed. 2019. On the classes of \((n, m)\)-power \(D\)-normal and \((n, m)\)-power \(D\)-quasi-normal operators. Oper. Matrices 13 (3): 705–732.

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the referees for their comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Messaoud Guesba.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Communicated by S Ponnusamy.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guesba, M., Mahmoud, S.A.O.A. On a class of Drazin invertible operators for which \(\left( S^{*}\right) ^{2}\left( S^{D}\right) ^{2}=\left( S^{*}S^{D}\right) ^{2}\). J Anal 32, 1093–1109 (2024). https://doi.org/10.1007/s41478-023-00676-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41478-023-00676-2

Keywords

Mathematics Subject Classification

Navigation