Skip to main content
Log in

Analytical solution of a class of Lane–Emden equations: Adomian decomposition method

  • Original Research Paper
  • Published:
The Journal of Analysis Aims and scope Submit manuscript

Abstract

In this paper, the analytical solution of a class of Lane–Emden equation is considered using the Adomian decomposition method. The nonlinear term of the proposed equation is given by normalised Jacobi functions \({\mathscr {P}}_{\gamma }^{(\alpha , \beta )}(y(x))\) (\(\gamma \in {\mathbb {C}};\alpha ,\beta >-1\)). The Adomian polynomials for the Jacobi functions \({\mathscr {P}}_{\gamma }^{(\alpha , \beta )}(y(x))\) are constructed and the power series solutions are presented. For the special cases \(\gamma =0,1\); closed form solutions are obtained. Interestingly, the functions \({\mathscr {P}}_{\gamma }^{(\alpha , \beta )}\) are the spherical functions (normalised eigenfunctions) of the Laplacian on rank one symmetric spaces. In order to present several examples of Lane-Emden type equations and their solutions, we specialise to the spherical functions on the real hyperbolic space and sphere (\(\alpha =\beta =(n-2)/2\)), the complex hyperbolic space (\(\alpha =n-1,\beta =0\)), the quaternionic hyperbolic space (\(\alpha =2n-1,\beta =1\)), and the Cayley hyperbolic plane (\(\alpha =7,\beta =3\)), as well as their corresponding projective spaces. Comparisons of the results from the present method with other published results show that the Adomian decomposition method gives accurate and reliable approximate solutions of Lane–Emden equations involving Jacobi functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Abbaoui, K., and Y. Cherruault. 1999. Convergence of Adomian’s method applied to differential equations. Computers and Mathematics with Applications 102: 77–86.

    Google Scholar 

  2. Adomian, G. 1984. A new approach to nonlinear partial differential equations. Journal of Mathematical Analysis and Applications 102: 420–434.

    MathSciNet  Google Scholar 

  3. Adomian, G. 1988. A review of the decomposition method in applied mathematics. Journal of Mathematical Analysis and Applications 135: 501–544.

    MathSciNet  Google Scholar 

  4. Adomian, G. 1994. Solving Frontier Problems of Physics. Kluwer: The Decomposition Method.

    Google Scholar 

  5. Adomian, G., R. Rach, and N.T. Shawagfeh. 1995. On the analytic solution of Lane-Emden equation. Foundations of Physics Letters 8: 161–181.

    ADS  Google Scholar 

  6. Anker, J.P., E. Damek, and C. Yacoub. 1996. Spherical analysis on harmonic \(AN\) groups. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze 23: 643–679.

    MathSciNet  Google Scholar 

  7. Askey, R. 1975. Orthogonal Polynomials and Special Functions. Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics.

  8. Askey, R., and J. Fitch. 1969. Integral representations for Jacobi polynomials and some applications. Journal of Mathematical Analysis and Applications 26: 411–437.

    MathSciNet  Google Scholar 

  9. Aslanov, A. 2008. A generalization of the Lane-Emden equation. International Journal of Computer Mathematics 85: 661–663.

    MathSciNet  Google Scholar 

  10. Awonusika, R.O. 2021. On Jacobi polynomials \({\mathscr {P}}_{k}^{(\alpha,\beta )}\) and coefficients \(c_{j}^{\ell }(\alpha,\beta )\)\(\left( k\ge 0,\ell =5,6;1\le j\le \ell; \alpha,\beta > -1\right)\). The Journal of Analysis 29: 649–667.

    MathSciNet  Google Scholar 

  11. Awonusika, R.O. 2022. Maclaurin spectral results on rank one symmetric spaces of noncompact type. The Journal of Analysis 30: 285–329.

    MathSciNet  Google Scholar 

  12. Awonusika, R.O. 2022. Analytical solution of a class of fractional Lane-Emden equation: a power series method, International Journal of Applied and Computational Mathematics. https://doi.org/10.1007/s40819-022-01354-w

  13. Awonusika, R.O., and O.A. Mogbojuri. 2022. Approximate analytical solution of fractional Lane-Emden equation by Mittag-Leffler Function Method. Journal of Nigerian Society of Physical Sciences 4: 265–280.

    Google Scholar 

  14. Awonusika, R.O., and A. Taheri. 2017. On Jacobi polynomials \(({\mathscr {P}}_k^{(\alpha, \beta )}: \alpha, \beta >-1)\) and Maclaurin spectral functions on rank one symmetric spaces. The Journal of Analysis 25: 139–166.

    MathSciNet  Google Scholar 

  15. Awonusika, R.O., and A. Taheri. 2018. A spectral identity on Jacobi polynomials and its analytic implications. Canadian Mathematical Bulletin 61: 473–482.

    MathSciNet  Google Scholar 

  16. Boubaker, K., and R.A.V. Gorder. 2012. Application of the BPES to Lane-Emden equations governing polytropic and isothermal gas spheres. New Astronomy 17: 565–569.

    ADS  Google Scholar 

  17. Bray, W.O. 1996. Generalised spectral projections on symmetric spaces of noncompact type. Journal of Functional Analysis 135: 206–232.

    Google Scholar 

  18. Camporesi, R. 1990. Harmonic analysis and propagators on homogeneous spaces. Physics Reports 196: 1–134.

    ADS  MathSciNet  Google Scholar 

  19. Cartan, E. 1929. Sur la détermination d’un système orthogonal complet dans un espace de Riemann symétrique clos. Rendiconti del Circolo Matematico di Palermo 53: 217–252.

    Google Scholar 

  20. Chandrasekhar, S. 1967. Introduction to the Study of Stellar Structure. New York: Dover.

    Google Scholar 

  21. Dehghan, M., and F. Shakeri. 2008. Approximate solution of a differential equation arising in astrophysics using the variational iteration method. New Astronomy 13: 53–59.

    ADS  Google Scholar 

  22. Everitt, W.N., K.H. Kwon, L.L. Littlejohn, R. Wellman, and G.J. Yoon. 2007. Jacobi-Stirling numbers, Jacobi polynomials, and the leftdefinite analysis of the classical Jacobi differential expression. Journal of Computational and Applied Mathematics 208: 29–56.

    ADS  MathSciNet  Google Scholar 

  23. Everitt, W.N., L.L. Littlejohn, and R. Wellman. 2002. Legendre polynomials, Legendre-Stirling numbers, and the left-definite spectral analysis of the Legendre differential expression. Journal of Computational and Applied Mathematics 148: 29–56.

    ADS  MathSciNet  Google Scholar 

  24. Gelfand, I., and Jacquet, H. Spherical functions on symmetric Riemann spaces, Doklady Akad. Nauk SSSR, 1950, pp. 5–8.

  25. Gelineau, Y., and J. Zeng. 2010. Combinatorial interpretations of the Jacobi-Stirling numbers. Electronic Journal of Combinatorics 17: R70.

    MathSciNet  Google Scholar 

  26. Godement, R. 1952. A theory of spherical functions I. Transactions of American Mathematical Society 73: 496–556.

    MathSciNet  Google Scholar 

  27. Goldfeld, D. Automorphic Forms and\({L}\)-Functions for the Group\({GL (n, \varvec {R})}\), Cambridge University Press, 2006.

  28. Harish-Chandra, B. 1958. Spherical Functions on a Semisimple Lie Group, I. American Journal of Mathematics 75: 241–310.

    MathSciNet  Google Scholar 

  29. He, J.H. 2003. Variational approach to the Lane-Emden equation, Applied Mathematics and Computation 143: 539–541.

  30. He, J.H., and F.Y. Ji. 2019. Taylor series solution for Lane-Emden equation. Journal of Mathematical Chemistry. https://doi.org/10.1007/s10910-019-01048-7.

    Article  MathSciNet  Google Scholar 

  31. Helgason, S. 1984. Groups and Geometric Analysis: Radon Transforms. Invariant Differential Operators and Spherical functions. Academic Press.

  32. Helgason, S. 1994. Geometric Analysis on Symmetric Spaces, American Mathematical Society.

  33. Iwasawa, K. 1949. On some types of topological groups. Annals of Mathematics. pp. 507–558.

  34. Khalique, M.C., F.M. Mahomed, and B. Muatjetjeja. 2008. Lagrangian formulation of a generalized Lane–Emden equation and double reduction. Journal of Nonlinear Mathematical Physics 15: 152–161.

    ADS  MathSciNet  Google Scholar 

  35. Koornwinder, T.H. 1984. Jacobi functions and analysis on noncompact semisimple Lie groups, In: Special Functions: Group Theoretical Aspects and Applications, Reidel Dordrecht, pp. 1–85.

  36. Mach, P. 2012. All solutions of the \(n = 5\) Lane-Emden equation. Journal of Mathematical Physics 53: 062503. http://doi.org/10.1063/1.4725414

  37. Madduri, H., and P. Roul. 2019. A fast-converging iterative scheme for solving a system of Lane-Emden equations arising in catalytic diffusion reactions. Journal of Mathematical Chemistry 57: 570–582.

    MathSciNet  CAS  Google Scholar 

  38. Madduri, H., P. Roul, T.C. Hao, F.Z. Cong, and Y.F. Shang. 2018. An efficient method for solving coupled Lane-Emden boundary value problems in catalytic diffusion reactions and error estimate. Journal of Mathematical Chemistry 56: 2691–2706.

    MathSciNet  Google Scholar 

  39. Mohan, C., and A.R. Al-Bayaty. 1980. Power series solutions of the Lane-Emden equation. Astrophysics and Space Science 73: 227–239.

    ADS  MathSciNet  Google Scholar 

  40. Rach, R. 1984. A convenient computational form for the Adomian polynomials. Journal of Mathematical Analysis and Applications 102: 415–419.

    MathSciNet  Google Scholar 

  41. Ramos, J.I. 2008. Series approach to the Lane-Emden equation and comparison with the homotopy perturbation method. Chaos, Solitons & Fractals 38: 400–408.

    ADS  MathSciNet  Google Scholar 

  42. Richardson, O.U. 1921. The Emission of Electricity from Hot Bodies. New York: Longman, Green and Co.

    Google Scholar 

  43. Roul, P. 2019. A new mixed MADM-Collocation approach for solving a class of Lane-Emden singular boundary value problems. Journal of Mathematical Chemistry 57: 945–969.

    MathSciNet  CAS  Google Scholar 

  44. Seng, V., K. Abbaoui, and Y. Cherruault. 1996. Adomian’s polynomials for nonlinear operators. Mathematical and Computer Modelling 24: 59–65.

    MathSciNet  Google Scholar 

  45. Singh, O.P., R.K. Pandey, and V.K. Singh. 2009. An analytic algorithm of Lane-Emden type equations arising in astrophysics using modified Homotopy analysis method. Computer Physics Communications 180: 1116–1124.

    ADS  MathSciNet  CAS  Google Scholar 

  46. Singh, H., R.K. Pandey, and H.M. Srivastava. 2019. Solving non-linear fractional variational problems using Jacobi polynomials. Mathematics 7: 224.

    Google Scholar 

  47. Szegö, G. 1975. Orthogonal Polynomials, 4th ed. Colloquium Publications XXIII. Providence: American Mathematical Society.

  48. Takeuchi, M. 1994. Modern Spherical Functions. American Mathematical Society.

  49. Vanani, S.K., and A. Aminataei. 2010. On the numerical solutions of differential equations of Lane-Emden type. Computers and Mathematics with Applications 59: 2815–2820.

    MathSciNet  Google Scholar 

  50. Verma, A.K., and S. Kayenat. 2018. On the convergence of Mickens’ type nonstandard finite difference schemes on Lane-Emden type equations. Journal of Mathematical Chemistry 56: 1667–1706.

    MathSciNet  CAS  Google Scholar 

  51. Vilenkin, N.J. 1968. Special Functions and the Theory of Group Representations, Translations of Mathematical Monographs, Vol. 22. American Mathematical Society.

  52. Volchkov, V.V., Volchkov, V.V. 2009. Harmonic Analysis of Mean Periodic Functions on Symmetric Spaces and the Heisenberg Group, Springer Monographs in Mathematics. Springer.

  53. Vretare, L. 1976. Elementary spherical functions on symmetric spaces. Mathematica Scandinavica 39: 343–358.

    MathSciNet  Google Scholar 

  54. Vretare, L. 1984. Formulas for elementary spherical functions and generalized Jacobi polynomials. SIAM Journal on Mathematical Analysis 15: 805–833.

    MathSciNet  Google Scholar 

  55. Wazwaz, A.M. 1995. The decomposition method for approximate solution of the Goursat problem. Applied Mathematics and Computation 69: 299–311.

    MathSciNet  Google Scholar 

  56. Wazwaz, A.M. 1999. A reliable modification of Adomian’s decomposition method. Applied Mathematics and Computation 102: 77–86.

    MathSciNet  Google Scholar 

  57. Wazwaz, A.M. 2000. A new algorithm for calculating Adomian polynomials for nonlinear operators. Applied Mathematics and Computation 111: 53–69.

    MathSciNet  Google Scholar 

  58. Wazwaz, A.M. 2001. A new algorithm for solving differential equations of Lane-Emden type. Applied Mathematics and Computation 118: 287–310.

    MathSciNet  Google Scholar 

  59. Wazwaz, A.M. 2017. Solving the non-isothermal reaction-diffusion model equations in a spherical catalyst by the variational iteration method. Chemical Physics Letters 679: 132–136.

    ADS  CAS  Google Scholar 

  60. Yildirim, A., Ozis, T. 2007. Solutions of singular IVPs of Lane-Emden type by homotopy perturbation method. Physics Letters A 369: 70–76.

  61. Yousefi, S.A. 2006. Legendre wavelets method for solving differential equations of Lane-Emden type. Applied Mathematics and Computation 181: 1417–1422.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Olu Awonusika.

Ethics declarations

Conflicts of interest

The author declares that there is no conflict of interest.

Additional information

Communicated by S. Ponnusamy.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Awonusika, R.O. Analytical solution of a class of Lane–Emden equations: Adomian decomposition method. J Anal 32, 1009–1056 (2024). https://doi.org/10.1007/s41478-023-00667-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41478-023-00667-3

Keywords

Mathematics Subject Classification

Navigation